Water Quality Centre, Trent University, Peterborough, Ontario, K9J 7B8, Canada.
Anal Chim Acta. 2012 Feb 3;713:86-91. doi: 10.1016/j.aca.2011.11.048. Epub 2011 Dec 1.
Titanium dioxide (i.e. TiO(2)) in nano-form is a constituent of many nanomaterials that are used in sunscreens, cosmetics, industrial products and in biomedical applications. Quantification of TiO(2) nanoparticles in various matrixes is a topic of great interest for researchers studying the potential health and environmental impacts of nanoparticles. However, analysis of TiO(2) as Ti(4+) is difficult because current digestion techniques require use of strong acids that may be a health and safety risk in the laboratory. To overcome this problem, we developed a new method to digest TiO(2) nanoparticles using ammonium persulfate as a fusing reagent. The digestion technique requires short times to completion and optimally requires only 1 g of fusing reagent. The fusion method showed >95% recovery of Ti(4+) from 6 μg mL(-1) aqueous suspensions prepared from 10 μg mL(-1) suspension of different forms of TiO(2,) including anatase, rutile and mixed nanosized crystals, and amorphous particles. These recoveries were greater than open hot-plate digestion with a tri-acid solution and comparable to microwave digestion with a tri-acid solution. Cations and anions commonly found in natural waters showed no significant interferences when added to samples in amounts of 10 ng to 110 mg, which is a much broader range of these ions than expected in environmental samples. Using ICP-MS for analysis, the method detection limit (MDL) was determined to be 0.06 ng mL(-1), and the limit of quantification (LOQ) was 0.20 ng mL(-1). Analysis of samples of untreated and treated wastewater and biosolids collected from wastewater treatment plants yielded concentrations of TiO(2) of 1.8 and 1.6 ng mL(-1) for the wastewater samples, respectively, and 317.4 ng mg(-1) dry weights for the biosolids. The reactions between persulfate ions and TiO(2) were evaluated using stoichiometric methods and FTIR and XRD analysis. A formula for the fusing reaction is proposed that involves the formation of sulfate radicals.
二氧化钛(TiO2)纳米形式是许多纳米材料的组成部分,这些纳米材料被用于防晒霜、化妆品、工业产品和生物医学应用。量化各种基质中的 TiO2 纳米颗粒是研究纳米颗粒潜在健康和环境影响的研究人员非常感兴趣的主题。然而,分析 TiO2 为 Ti(4+) 是困难的,因为目前的消解技术需要使用强酸,这在实验室中可能是一个健康和安全风险。为了克服这个问题,我们开发了一种使用过硫酸铵作为熔剂来消化 TiO2 纳米颗粒的新方法。该消解技术需要很短的时间完成,最佳情况下只需要 1 克熔剂。融合方法显示,从 6μg mL(-1)的水溶液中,从 10μg mL(-1)的不同形式的 TiO2(包括锐钛矿、金红石和混合纳米晶体以及无定形颗粒)悬浮液中制备的 10μg mL(-1)悬浮液中,Ti(4+)的回收率超过 95%。这些回收率大于用三酸溶液在敞开式热板上进行的消化,与用三酸溶液进行微波消化相当。当以 10ng 至 110mg 的量添加到样品中时,常见于天然水中的阳离子和阴离子没有显示出显著的干扰,这是环境样品中预期的这些离子的范围要宽得多。使用 ICP-MS 进行分析,方法检测限(MDL)确定为 0.06ng mL(-1),定量限(LOQ)为 0.20ng mL(-1)。对从废水处理厂收集的未经处理和处理后的废水和生物固体样品进行分析,得到废水样品中 TiO2 的浓度分别为 1.8 和 1.6ng mL(-1),生物固体的干重为 317.4ng mg(-1)。通过化学计量方法、FTIR 和 XRD 分析评估了过硫酸盐离子与 TiO2 的反应。提出了一个用于熔融反应的公式,涉及到形成硫酸根自由基。