Suppr超能文献

昆虫运动探测器对自然场景空间结构的局部和全局响应。

Local and global responses of insect motion detectors to the spatial structure of natural scenes.

作者信息

O'Carroll David C, Barnett Paul D, Nordström Karin

机构信息

Adelaide Centre for Neuroscience Research, School of Medical Sciences, The University of Adelaide, SA, Australia.

出版信息

J Vis. 2011 Dec 27;11(14):20. doi: 10.1167/11.14.20.

Abstract

As a consequence of the non-linear correlation mechanism underlying motion detection, the variability in local pattern structure and contrast inherent within natural scenes profoundly influences local motion responses. To accurately interpret optic flow induced by self-motion, neurons in many dipteran flies smooth this "pattern noise" by wide-field spatial integration. We investigated the role that size and shape of the receptive field plays in smoothing out pattern noise in two unusual hoverfly optic flow neurons: one (HSN) with an exceptionally small receptive field and one (HSNE) with a larger receptive field. We compared the local and global responses to a sequence of panoramic natural images in these two neurons with a parsimonious model for elementary motion detection weighted for their spatial receptive fields. Combined with manipulation of size and contrast of the stimulus images, this allowed us to separate spatial integration properties arising from the receptive field, from other local and global non-linearities, such as motion adaptation and dendritic gain control. We show that receptive field properties alone are poor predictors of the response to natural scenes. If anything, additional non-linearity enhances the pattern dependence of HSN's response, particularly to vertically elongated features, suggesting that it may serve a role in forward fixation during hovering.

摘要

由于运动检测背后的非线性相关机制,自然场景中固有的局部模式结构和对比度的变化会深刻影响局部运动反应。为了准确解释由自身运动引起的光流,许多双翅目苍蝇的神经元通过宽视野空间整合来平滑这种“模式噪声”。我们研究了感受野的大小和形状在两种不同寻常的食蚜蝇光流神经元中消除模式噪声所起的作用:一种(HSN)具有异常小的感受野,另一种(HSNE)具有较大的感受野。我们将这两种神经元对一系列全景自然图像的局部和全局反应与一个基于其空间感受野加权的简单基本运动检测模型进行了比较。结合对刺激图像大小和对比度的操纵,这使我们能够将感受野产生的空间整合特性与其他局部和全局非线性因素(如运动适应和树突增益控制)区分开来。我们表明,仅感受野特性并不能很好地预测对自然场景的反应。如果有什么不同的话,额外的非线性增强了HSN反应对模式的依赖性,特别是对垂直拉长的特征,这表明它可能在悬停过程中的向前注视中发挥作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验