Parasitology Unit, Max Planck Institute for Infection Biology, 10117 Berlin, Germany.
Front Biosci (Landmark Ed). 2012 Jan 1;17(2):726-44. doi: 10.2741/3954.
Plasmodium, the causative agent of malaria, employs its own actin/myosin-based motor for forward locomotion, penetration of molecular and cellular barriers, and invasion of target cells. The sporozoite is unique amongst the extracellular Plasmodium developmental forms in that it has to cross considerable distances and different tissues inside the mosquito and vertebrate hosts to ultimately reach a parenchymal liver cell, the proper target cell where to transform and replicate. Throughout this dangerous journey, the parasite alternates between being passively transported by the body fluids and using its own active cellular motility to seamlessly glide through extracellular matrix and cell barriers. But irrespective of the chosen path, the sporozoite is compelled to keep on moving at a fairly fast pace to escape destruction by host defense mechanisms. Here, we highlight and discuss recent findings collected in Plasmodium sporozoites and related parasites that shed new light on the biological significance of apicomplexan motility and on the structure and regulation of the underlying motor machinery.
疟原虫是疟疾的病原体,它利用自身的肌动蛋白/肌球蛋白为基础的马达进行向前运动、穿透分子和细胞屏障以及入侵靶细胞。在疟原虫的所有细胞外发育形式中,子孢子是独特的,因为它必须穿过相当长的距离和不同的组织,在蚊子和脊椎动物宿主中,最终到达实质肝细胞,这是合适的靶细胞,在那里进行转化和复制。在整个危险的旅程中,寄生虫在被体液被动运输和使用自身主动细胞运动之间交替,以无缝地在细胞外基质和细胞屏障中滑行。但无论选择哪种途径,子孢子都必须保持相当快的速度运动,以逃避宿主防御机制的破坏。在这里,我们强调和讨论了在疟原虫子孢子和相关寄生虫中收集的最新发现,这些发现揭示了顶复门运动的生物学意义以及潜在的运动机制的结构和调节。