Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, Kanpur 208016, India.
Math Biosci. 2012 Mar;236(1):64-76. doi: 10.1016/j.mbs.2011.12.005. Epub 2011 Dec 21.
In this paper we consider a modified spatiotemporal ecological system originating from the temporal Holling-Tanner model, by incorporating diffusion terms. The original ODE system is studied for the stability of coexisting homogeneous steady-states. The modified PDE system is investigated in detail with both numerical and analytical approaches. Both the Turing and non-Turing patterns are examined for some fixed parametric values and some interesting results have been obtained for the prey and predator populations. Numerical simulation shows that either prey or predator population do not converge to any stationary state at any future time when parameter values are taken in the Turing-Hopf domain. Prey and predator populations exhibit spatiotemporal chaos resulting from temporal oscillation of both the population and spatial instability. With help of numerical simulations we have shown that Turing-Hopf bifurcation leads to onset of spatio-temporal chaos when predator's diffusivity is much higher compared to prey population. Our investigation reveals the fact that Hopf-bifurcation is essential for the onset of spatiotemporal chaos.
在本文中,我们考虑了一个源于时间 Holling-Tanner 模型的改进时空生态系统,通过引入扩散项。我们研究了原始 ODE 系统共存均匀稳定态的稳定性。通过数值和分析方法详细研究了改进的 PDE 系统。对于一些固定的参数值,检查了图灵和非图灵模式,并获得了一些关于猎物和捕食者种群的有趣结果。数值模拟表明,当参数值取在图灵-霍普夫域中时,在任何未来时间,猎物或捕食者种群都不会收敛到任何稳定状态。由于种群和空间不稳定性的时间振荡,猎物和捕食者种群表现出时空混沌。通过数值模拟,我们表明,当捕食者的扩散率远高于猎物种群时,图灵-霍普夫分岔导致时空混沌的出现。我们的研究揭示了这样一个事实,即霍普夫分岔对于时空混沌的出现是至关重要的。