School of Clinical Sciences, Queen's Medical Centre Campus, University Division of Anaesthesia & Intensive Care, Nottingham University Hospital, Derby Road, Nottingham, UK.
Math Biosci. 2012 Oct;239(2):179-90. doi: 10.1016/j.mbs.2012.05.006. Epub 2012 May 31.
The study of reaction-diffusion system constitutes some of the most fascinating developments of late twentieth century mathematics and biology. This article investigates complexity and chaos in the complex patterns dynamics of the original Beddington-DeAngelis predator-prey model which concerns the influence of intra species competition among predators. We investigate the emergence of complex patterns through reaction-diffusion equations in this system. We derive the conditions for the codimension-2 Turing-Hopf, Turing-Saddle-node, and Turing-Transcritical bifurcation, and the codimension-3 Turing-Takens-Bogdanov bifurcation. These bifurcations give rise to very complex patterns that have not been observed in previous predator-prey models. A large variety of different types of long-term behavior, including homogenous distributions and stationary spatial patterns are observed through extensive numerical simulations with experimentally-based parameter values. Finally, a discussion of the ecological implications of the analytical and numerical results concludes the paper.
反应扩散系统的研究构成了二十世纪后期数学和生物学最引人入胜的发展之一。本文研究了原始贝丁顿-德安吉利斯捕食者-猎物模型复杂模式动力学中的复杂性和混沌,该模型涉及捕食者种内竞争对其的影响。我们通过该系统中的反应扩散方程研究复杂模式的出现。我们推导出了余维 2 的 Turing-Hopf、Turing-Saddle-node 和 Turing-Transcritical 分岔,以及余维 3 的 Turing-Takens-Bogdanov 分岔的条件。这些分岔产生了非常复杂的模式,在以前的捕食者-猎物模型中没有观察到。通过基于实验的参数值进行广泛的数值模拟,观察到了大量不同类型的长期行为,包括均匀分布和稳定的空间模式。最后,本文讨论了分析和数值结果的生态学意义。