Suppr超能文献

全基因组关联分析发现与抗精神病药引起的小鼠锥体外系症状相关的基因座。

Genome-wide association mapping of loci for antipsychotic-induced extrapyramidal symptoms in mice.

机构信息

Department of Genetics, University of North Carolina, Genomic Medicine Building, CB#7264, Chapel Hill, NC 27599-7264, USA.

出版信息

Mamm Genome. 2012 Jun;23(5-6):322-35. doi: 10.1007/s00335-011-9385-8. Epub 2011 Dec 30.

Abstract

Tardive dyskinesia (TD) is a debilitating, unpredictable, and often irreversible side effect resulting from chronic treatment with typical antipsychotic agents such as haloperidol. TD is characterized by repetitive, involuntary, purposeless movements primarily of the orofacial region. In order to investigate genetic susceptibility to TD, we used a validated mouse model for a systems genetics analysis geared toward detecting genetic predictors of TD in human patients. Phenotypic data from 27 inbred strains chronically treated with haloperidol and phenotyped for vacuous chewing movements were subject to a comprehensive genomic analysis involving 426,493 SNPs, 4,047 CNVs, brain gene expression, along with gene network and bioinformatic analysis. Our results identified ~50 genes that we expect to have high prior probabilities for association with haloperidol-induced TD, most of which have never been tested for association with human TD. Among our top candidates were genes regulating the development of brain motor control regions (Zic4 and Nkx6-1), glutamate receptors (Grin1 and Grin2a), and an indirect target of haloperidol (Drd1a) that has not been studied as well as the direct target, Drd2.

摘要

迟发性运动障碍(TD)是一种进行性、不可预测且常不可逆的副作用,源于长期使用典型抗精神病药物,如氟哌啶醇。TD 的特征是反复、无意识、无目的的运动,主要发生在口腔面部区域。为了研究对 TD 的遗传易感性,我们使用了一种经过验证的小鼠模型,进行了系统遗传学分析,旨在检测人类患者中 TD 的遗传预测因子。用氟哌啶醇慢性治疗并表型为空嚼运动的 27 个近交系的表型数据,进行了包括 426,493 个 SNPs、4,047 个 CNVs、脑基因表达以及基因网络和生物信息学分析的综合基因组分析。我们的结果确定了约 50 个基因,我们预计这些基因与氟哌啶醇诱导的 TD 具有高的关联先验概率,其中大多数基因从未被测试过与人类 TD 的关联。我们的候选基因包括调节大脑运动控制区域发育的基因(Zic4 和 Nkx6-1)、谷氨酸受体(Grin1 和 Grin2a)以及氟哌啶醇的间接靶点(Drd1a),该靶点尚未像直接靶点 Drd2 一样进行研究。

相似文献

1
Genome-wide association mapping of loci for antipsychotic-induced extrapyramidal symptoms in mice.
Mamm Genome. 2012 Jun;23(5-6):322-35. doi: 10.1007/s00335-011-9385-8. Epub 2011 Dec 30.
2
Association of the HSPG2 gene with neuroleptic-induced tardive dyskinesia.
Neuropsychopharmacology. 2010 Apr;35(5):1155-64. doi: 10.1038/npp.2009.220. Epub 2010 Jan 13.
3
Antipsychotic-induced vacuous chewing movements and extrapyramidal side effects are highly heritable in mice.
Pharmacogenomics J. 2012 Apr;12(2):147-55. doi: 10.1038/tpj.2010.82. Epub 2010 Nov 16.
5
Effect of 5-HT1A and 5-HT2A/2C receptor modulation on neuroleptic-induced vacuous chewing movements.
Eur J Pharmacol. 2001 Sep 28;428(1):81-6. doi: 10.1016/s0014-2999(01)01284-5.
7
Analysis of genetic variations in the RGS9 gene and antipsychotic-induced tardive dyskinesia in schizophrenia.
Am J Med Genet B Neuropsychiatr Genet. 2009 Mar 5;150B(2):239-42. doi: 10.1002/ajmg.b.30796.
8
Haloperidol-Induced Preclinical Tardive Dyskinesia Model in Rats.
Curr Protoc Neurosci. 2019 Jun;88(1):e68. doi: 10.1002/cpns.68.
9
Behavioural effects of chronic haloperidol and risperidone treatment in rats.
Behav Brain Res. 2006 Aug 10;171(2):286-94. doi: 10.1016/j.bbr.2006.04.004. Epub 2006 May 11.
10
Clinical relationship of extrapyramidal symptoms and tardive dyskinesia.
Can J Psychiatry. 1994 Nov;39(9 Suppl 2):S76-80.

引用本文的文献

1
Gene expression changes following chronic antipsychotic exposure in single cells from mouse striatum.
Mol Psychiatry. 2022 Jun;27(6):2803-2812. doi: 10.1038/s41380-022-01509-7. Epub 2022 Mar 23.
2
Genetic Factors Associated With Tardive Dyskinesia: From Pre-clinical Models to Clinical Studies.
Front Pharmacol. 2022 Jan 24;12:834129. doi: 10.3389/fphar.2021.834129. eCollection 2021.
4
Akathisia as an Extrapyramidal Side Effect of Fluoxetine.
Cureus. 2021 Jun 21;13(6):e15797. doi: 10.7759/cureus.15797. eCollection 2021 Jun.
6
Comparative genomic evidence for the involvement of schizophrenia risk genes in antipsychotic effects.
Mol Psychiatry. 2018 Mar;23(3):708-712. doi: 10.1038/mp.2017.111. Epub 2017 May 30.
7
Therapeutic Perspective on Tardive Syndrome with Special Reference to Deep Brain Stimulation.
Front Psychiatry. 2016 Dec 26;7:207. doi: 10.3389/fpsyt.2016.00207. eCollection 2016.
8
Revisiting Antipsychotic-induced Akathisia: Current Issues and Prospective Challenges.
Curr Neuropharmacol. 2017;15(5):789-798. doi: 10.2174/1570159X14666161208153644.
10
A Pharmacogenetic Discovery: Cystamine Protects Against Haloperidol-Induced Toxicity and Ischemic Brain Injury.
Genetics. 2016 May;203(1):599-609. doi: 10.1534/genetics.115.184648. Epub 2016 Mar 18.

本文引用的文献

1
Behavioral pharmacology of orofacial movement disorders.
Int Rev Neurobiol. 2011;97:1-38. doi: 10.1016/B978-0-12-385198-7.00001-1.
2
Genetic analysis of complex traits in the emerging Collaborative Cross.
Genome Res. 2011 Aug;21(8):1213-22. doi: 10.1101/gr.111310.110. Epub 2011 Mar 15.
4
Antipsychotic-induced vacuous chewing movements and extrapyramidal side effects are highly heritable in mice.
Pharmacogenomics J. 2012 Apr;12(2):147-55. doi: 10.1038/tpj.2010.82. Epub 2010 Nov 16.
5
The Mouse Genome Database (MGD): premier model organism resource for mammalian genomics and genetics.
Nucleic Acids Res. 2011 Jan;39(Database issue):D842-8. doi: 10.1093/nar/gkq1008. Epub 2010 Nov 3.
6
The UCSC Genome Browser database: update 2011.
Nucleic Acids Res. 2011 Jan;39(Database issue):D876-82. doi: 10.1093/nar/gkq963. Epub 2010 Oct 18.
7
Toxicogenetics: population-based testing of drug and chemical safety in mouse models.
Pharmacogenomics. 2010 Aug;11(8):1127-36. doi: 10.2217/pgs.10.100.
9
MTCH2/MIMP is a major facilitator of tBID recruitment to mitochondria.
Nat Cell Biol. 2010 Jun;12(6):553-562. doi: 10.1038/ncb2057. Epub 2010 May 2.
10
Genomewide association study of movement-related adverse antipsychotic effects.
Biol Psychiatry. 2010 Feb 1;67(3):279-82. doi: 10.1016/j.biopsych.2009.08.036. Epub 2009 Oct 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验