Suppr超能文献

一种改进的方法,用于从胃高分辨率电映射中估计和可视化速度场。

An improved method for the estimation and visualization of velocity fields from gastric high-resolution electrical mapping.

机构信息

Auckland Bioengineering Institute, The University of Auckland, Auckland 1010, New Zealand.

出版信息

IEEE Trans Biomed Eng. 2012 Mar;59(3):882-9. doi: 10.1109/TBME.2011.2181845. Epub 2011 Dec 26.

Abstract

High-resolution (HR) electrical mapping is an important clinical research tool for understanding normal and abnormal gastric electrophysiology. Analyzing velocities of gastric electrical activity in a reliable and accurate manner can provide additional valuable information for quantitatively and qualitatively comparing features across and within subjects, particularly during gastric dysrhythmias. In this study, we compared three methods of estimating velocities from HR recordings to determine which method was the most reliable for use with gastric HR electrical mapping. The three methods were 1) simple finite difference (FD) 2) smoothed finite difference (FDSM), and 3) a polynomial-based method. With synthetic data, the accuracy of the simple FD method resulted in velocity errors almost twice that of the FDSM and the polynomial-based method, in the presence of activation time error up to 0.5 s. With three synthetic cases under various noise types and levels, the FDSM resulted in average speed error of 3.2% and an average angle error of 2.0° and the polynomial-based method had an average speed error of 3.3% and an average angle error of 1.7°. With experimental gastric slow wave recordings performed in pigs, the three methods estimated similar velocities (6.3-7.3 mm/s), but the FDSM method had a lower standard deviation in its velocity estimate than the simple FD and the polynomial-based method, leading it to be the method of choice for velocity estimation in gastric slow wave propagation. An improved method for visualizing velocity fields is also presented.

摘要

高分辨率(HR)电描记法是理解正常和异常胃电生理学的重要临床研究工具。以可靠和准确的方式分析胃电活动速度可以提供更多有价值的信息,用于定量和定性地比较跨个体和个体内的特征,特别是在胃节律紊乱期间。在这项研究中,我们比较了三种从 HR 记录中估计速度的方法,以确定哪种方法最可靠,可用于胃 HR 电描记。这三种方法是 1)简单有限差分(FD)2)平滑有限差分(FDSM)和 3)基于多项式的方法。使用合成数据,在激活时间误差高达 0.5 秒的情况下,简单 FD 方法的准确性导致速度误差几乎是 FDSM 和基于多项式的方法的两倍。在各种噪声类型和水平下的三个合成案例中,FDSM 导致平均速度误差为 3.2%,平均角度误差为 2.0°,基于多项式的方法的平均速度误差为 3.3%,平均角度误差为 1.7°。在用猪进行的实验性胃慢波记录中,三种方法估计的速度相似(6.3-7.3mm/s),但 FDSM 方法的速度估计标准差低于简单 FD 和基于多项式的方法,使其成为胃慢波传播中速度估计的首选方法。还提出了一种改进的可视化速度场的方法。

相似文献

1
An improved method for the estimation and visualization of velocity fields from gastric high-resolution electrical mapping.
IEEE Trans Biomed Eng. 2012 Mar;59(3):882-9. doi: 10.1109/TBME.2011.2181845. Epub 2011 Dec 26.
2
Quantification of Gastric Slow Wave Velocity Using Bipolar High-Resolution Recordings.
IEEE Trans Biomed Eng. 2022 Mar;69(3):1063-1071. doi: 10.1109/TBME.2021.3112955. Epub 2022 Feb 18.
3
High-resolution electrical mapping of porcine gastric slow-wave propagation from the mucosal surface.
Neurogastroenterol Motil. 2017 May;29(5). doi: 10.1111/nmo.13010. Epub 2016 Dec 29.
4
Origin and propagation of human gastric slow-wave activity defined by high-resolution mapping.
Am J Physiol Gastrointest Liver Physiol. 2010 Sep;299(3):G585-92. doi: 10.1152/ajpgi.00125.2010. Epub 2010 Jul 1.
5
Time-Delay Mapping of High-Resolution Gastric Slow-Wave Activity.
IEEE Trans Biomed Eng. 2017 Jan;64(1):166-172. doi: 10.1109/TBME.2016.2548940. Epub 2016 Apr 7.
6
Origin, propagation and regional characteristics of porcine gastric slow wave activity determined by high-resolution mapping.
Neurogastroenterol Motil. 2010 Oct;22(10):e292-300. doi: 10.1111/j.1365-2982.2010.01538.x. Epub 2010 Jul 6.
7
Detection of the Recovery Phase of in vivo gastric slow wave recordings.
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:6094-7. doi: 10.1109/EMBC.2015.7319782.
9
Automated classification of spatiotemporal characteristics of gastric slow wave propagation.
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:7342-5. doi: 10.1109/EMBC.2013.6611254.
10
A novel retractable laparoscopic device for mapping gastrointestinal slow wave propagation patterns.
Surg Endosc. 2017 Jan;31(1):477-486. doi: 10.1007/s00464-016-4936-4. Epub 2016 Apr 29.

引用本文的文献

2
Atrial conduction velocity mapping: clinical tools, algorithms and approaches for understanding the arrhythmogenic substrate.
Med Biol Eng Comput. 2022 Sep;60(9):2463-2478. doi: 10.1007/s11517-022-02621-0. Epub 2022 Jul 22.
3
Targeted ablation of gastric pacemaker sites to modulate patterns of bioelectrical slow wave activation and propagation in an anesthetized pig model.
Am J Physiol Gastrointest Liver Physiol. 2022 Apr 1;322(4):G431-G445. doi: 10.1152/ajpgi.00332.2021. Epub 2022 Feb 9.
4
Gastric ablation as a novel technique for modulating electrical conduction in the in vivo stomach.
Am J Physiol Gastrointest Liver Physiol. 2021 Apr 1;320(4):G573-G585. doi: 10.1152/ajpgi.00448.2020. Epub 2021 Jan 20.
7
High-resolution electrical mapping of porcine gastric slow-wave propagation from the mucosal surface.
Neurogastroenterol Motil. 2017 May;29(5). doi: 10.1111/nmo.13010. Epub 2016 Dec 29.
8
Functional physiology of the human terminal antrum defined by high-resolution electrical mapping and computational modeling.
Am J Physiol Gastrointest Liver Physiol. 2016 Nov 1;311(5):G895-G902. doi: 10.1152/ajpgi.00255.2016. Epub 2016 Sep 22.
10
A novel retractable laparoscopic device for mapping gastrointestinal slow wave propagation patterns.
Surg Endosc. 2017 Jan;31(1):477-486. doi: 10.1007/s00464-016-4936-4. Epub 2016 Apr 29.

本文引用的文献

1
Quantification of velocity anisotropy during gastric electrical arrhythmia.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:4402-5. doi: 10.1109/IEMBS.2011.6091092.
2
Improved signal processing techniques for the analysis of high resolution serosal slow wave activity in the stomach.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:1737-40. doi: 10.1109/IEMBS.2011.6090497.
3
The electrifying stomach.
Neurogastroenterol Motil. 2011 Sep;23(9):815-8. doi: 10.1111/j.1365-2982.2011.01756.x.
4
High-resolution spatial analysis of slow wave initiation and conduction in porcine gastric dysrhythmia.
Neurogastroenterol Motil. 2011 Sep;23(9):e345-55. doi: 10.1111/j.1365-2982.2011.01739.x. Epub 2011 Jun 30.
5
The "slow pathway" potential: fact or fiction?
Circ Arrhythm Electrophysiol. 2011 Apr;4(2):125-7. doi: 10.1161/CIRCEP.111.962662.
6
Automatic reconstruction of activation and velocity maps from electro-anatomic data by radial basis functions.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:2608-11. doi: 10.1109/IEMBS.2010.5626616.
7
Automated gastric slow wave cycle partitioning and visualization for high-resolution activation time maps.
Ann Biomed Eng. 2011 Jan;39(1):469-83. doi: 10.1007/s10439-010-0170-8. Epub 2010 Oct 7.
8
Origin, propagation and regional characteristics of porcine gastric slow wave activity determined by high-resolution mapping.
Neurogastroenterol Motil. 2010 Oct;22(10):e292-300. doi: 10.1111/j.1365-2982.2010.01538.x. Epub 2010 Jul 6.
9
Origin and propagation of human gastric slow-wave activity defined by high-resolution mapping.
Am J Physiol Gastrointest Liver Physiol. 2010 Sep;299(3):G585-92. doi: 10.1152/ajpgi.00125.2010. Epub 2010 Jul 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验