Computational Modeling and Simulation Section, National Institute for Interdisciplinary Science and Technology (CSIR), Trivandrum, India 695 019.
Inorg Chem. 2012 Jan 16;51(2):967-77. doi: 10.1021/ic202047g. Epub 2011 Dec 28.
The trans influence of various X ligands in hypervalent iodine(III) complexes of the type CF(3)[I(X)Cl] has been quantified using the trans I-Cl bond length (d(X)), the electron density ρ(r) at the (3, -1) bond critical point of the trans I-Cl bond, and topological features of the molecular electrostatic potential (MESP). The MESP minimum at the Cl lone pair region (V(min)) is a sensitive measure of the trans influence. The trans influence of X ligands in hypervalent iodine(V) complexes is smaller than that in iodine(III) complexes, while the relative ordering of this influence is the same in both complexes. In CF(3)[I(X)Y] complexes, the mutual trans influence due to the trans disposition of the X and Y ligands is quantified using the energy E(XY) of the isodesmic reaction CF(3)[I(X)Cl] + CF(3)[I(Y)Cl] → CF(3)[I(Cl)Cl] + CF(3)[I(X)Y]. E(XY) is predicted with good accuracy using the trans-influence parameters of X and Y, measured in terms of d(X), ρ(r), or V(min). The bond dissociation energy (E(d)) of X or Y in CF(3)[I(X)Y] is significantly influenced by the trans influence as well as the mutual trans influence. This is confirmed by deriving an empirical equation to predict E(d) using one of the trans-influence parameters (d(X), ρ(r), or V(min)) and the mutual trans-influence parameter E(XY) for a large number of complexes. The quantified values of both the trans influence and the mutual trans-influence parameters may find use in assessing the stability of hypervalent iodine compounds as well as in the design of new stable hypervalent complexes. Knowledge about the I-X bond dissociation energies will be useful for explaining the reactivity of hypervalent iodine complexes and the mechanism of their reactions.
各种 X 配体在型为 CF(3)[I(X)Cl]的高价碘(III)配合物中的反式影响已通过反式 I-Cl 键长(d(X))、反式 I-Cl 键的(3,-1)键临界点处的电子密度ρ(r)和分子静电势(MESP)的拓扑特征进行量化。Cl 孤对区域的 MESP 最小值(V(min))是反式影响的敏感度量。X 配体在高价碘(V)配合物中的反式影响小于在碘(III)配合物中的反式影响,而这种影响的相对顺序在两种配合物中是相同的。在 CF(3)[I(X)Y]配合物中,通过反式排布的 X 和 Y 配体之间的互反式影响的能量 E(XY)来量化,其方式为 CF(3)[I(X)Cl] + CF(3)[I(Y)Cl] → CF(3)[I(Cl)Cl] + CF(3)[I(X)Y]。E(XY)可以使用 X 和 Y 的反式影响参数,以 d(X)、ρ(r)或 V(min)为单位进行测量,以很好的准确度进行预测。X 或 Y 在 CF(3)[I(X)Y]中的键离解能(E(d))受到反式影响以及互反式影响的显著影响。通过为大量配合物推导一个使用一个反式影响参数(d(X)、ρ(r)或 V(min))和互反式影响参数 E(XY)来预测 E(d)的经验方程,就可以证实这一点。反式影响和互反式影响参数的量化值可能有助于评估高价碘化合物的稳定性以及设计新的稳定高价配合物。关于 I-X 键离解能的知识对于解释高价碘配合物的反应性及其反应机制将是有用的。