Computational Modeling and Simulation Section, National Institute for Interdisciplinary Science and Technology (CSIR), Trivandrum, 695 019, India.
Dalton Trans. 2010 Jan 21;39(3):815-22. doi: 10.1039/b911013e. Epub 2009 Nov 12.
Isodesmic reactions of the type Pd(II)Cl(2)X + Pd(II)Cl(3) --> Pd(II)Cl(2) + Pd(II)Cl(3)X have been designed to study the trans influence of a variety of 'X' ligands (X = H(2)O, NH(3), Py, CO, SMe(2), C(2)H(4), AsH(3), PH(3), AsMe(3), PMe(3), PEt(3), ONO(-), F(-), Cl(-), Br(-), N(3)(-), NO(2)(-), OH(-), CN(-), Ph(-), H(-), CH(3)(-), SiH(3)(-)) using density functional theory (MPWB1K) and COSMO continuum solvation model. We find that the isodesmic reaction energy E(1) is a good quantitative measure of the trans influence of X. E(1) showed good linear relationships to trans Pd-Cl bond length and the electron density rho(r) at the (3, -1) bond critical point of the trans Pd-Cl bond. On the basis of E(1) values, ligands are classified into three trans influencing groups, viz. strong, moderate, and weak. Isodesmic reactions of the type Pd(II)Cl(2)X + Pd(II)Cl(2)Y --> Pd(II)Cl(2) + Pd(II)Cl(2)X(Y) with ligands 'X' and 'Y' in the trans positions are also modelled to obtain the energy of the reaction E(2). E(2) is a measure of the mutual trans influence of X and Y and the highest (99.65 kcal mol(-1)) and the lowest (-3.95 kcal mol(-1)) E(2) are observed for X = Y = SiH(3)(-) and X = Y = H(2)O, respectively. Using the E(1) values of X (E(1X)) and Y (E(1Y)), the empirical equation 0.02026(E(1X) + (E(1Y)/radical2))(2) is derived for predicting the E(2) values (standard error = 2.33 kcal mol(-1)). Further, using the rho(r) of the trans Pd-Cl bond in Pd(II)Cl(3)X (rho(1X)) and Pd(II)Cl(3)Y (rho(1Y)), and a multiple linear regression (MLR) approach with rho(1X), rho(1Y), and rho(1X)rho(1Y) as variables, accurate prediction is made for predicting E(2) of any combination of X and Y (standard error = 2.20 kcal mol(-1)). We also find that the contribution of trans influence to the bond dissociation energy of ligands X or Y in complexes of the type Pd(II)Cl(2)X(Y) can be quantified in terms of E(1X) and E(1Y) or the corresponding rho(1X) and rho(1Y). The calculated E(1) values may find use in the development of new trans influence-incorporated force field models for palladium.
设计了 Pd(II)Cl(2)X + Pd(II)Cl(3) --> Pd(II)Cl(2) + Pd(II)Cl(3)X 类型的等电子反应,以使用密度泛函理论 (MPWB1K) 和 COSMO 连续溶剂化模型研究各种“X”配体(X = H(2)O、NH(3)、Py、CO、SMe(2)、C(2)H(4)、AsH(3)、PH(3)、AsMe(3)、PMe(3)、PEt(3)、ONO(-)、F(-)、Cl(-)、Br(-)、N(3)(-)、NO(2)(-)、OH(-)、CN(-)、Ph(-)、H(-)、CH(3)(-)、SiH(3)(-)) 的反式影响。我们发现等电子反应能 E(1)是 X 的反式影响的良好定量度量。E(1)与反式 Pd-Cl 键长和反式 Pd-Cl 键的 (3, -1) 键临界点处的电子密度 rho(r) 呈良好的线性关系。根据 E(1) 值,配体分为三组,即强、中、弱。还模拟了 Pd(II)Cl(2)X + Pd(II)Cl(2)Y --> Pd(II)Cl(2) + Pd(II)Cl(2)X(Y) 类型的等电子反应,以获得反应能 E(2)。E(2)是 X 和 Y 的相互反式影响的度量,观察到最高(99.65 kcal mol(-1))和最低(-3.95 kcal mol(-1))E(2)分别对应 X = Y = SiH(3)(-)和 X = Y = H(2)O。使用 X 的 E(1) 值 (E(1X)) 和 Y 的 E(1) 值 (E(1Y)),推导出了用于预测 E(2)值的经验方程 0.02026(E(1X) + (E(1Y)/radical2))(2)(标准误差 = 2.33 kcal mol(-1))。此外,使用 Pd(II)Cl(3)X(rho(1X))中反式 Pd-Cl 键的 rho(r)和 Pd(II)Cl(3)Y(rho(1Y)),并采用 rho(1X)、rho(1Y) 和 rho(1X)rho(1Y) 作为变量的多元线性回归 (MLR) 方法,可以准确预测任何 X 和 Y 的组合的 E(2)(标准误差 = 2.20 kcal mol(-1))。我们还发现,在 Pd(II)Cl(2)X(Y) 类型的配合物中,X 或 Y 配体的键离解能的反式影响可以用 E(1X)和 E(1Y)或相应的 rho(1X)和 rho(1Y)来量化。计算出的 E(1)值可能会在开发新的包含反式影响的钯力场模型方面得到应用。