Suppr超能文献

通过分子动力学模拟研究哺乳动物细胞色素 P450 活性部位的动力学和水合作用。

Dynamics and hydration of the active sites of mammalian cytochromes P450 probed by molecular dynamics simulations.

机构信息

Department of Physical Chemistry, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Olomouc, Czech Republic.

出版信息

Curr Drug Metab. 2012 Feb;13(2):177-89. doi: 10.2174/138920012798918408.

Abstract

The flexibility, active site volume, solvation, and access path dynamics of six metabolically active mammalian cytochromes P450 (human 2A6, 2C9, 2D6, 2E1, 3A4 and rabbit 2B4) are extensively studied using molecular dynamics (MD) simulations. On average, the enzymes' overall structures equilibrate on a 50+ ns timescale. The very open CYP2B4 structure closes slowly over the course of the simulation. The volumes of the active sites fluctuate by more than 50% during the MD runs; these fluctuations are mainly due to movements of the main chains, with only a handful of amino acid residues in CYP2B4, CYP2D6, CYP2A6 and CYP2C9 showing significant independent side chain movement. The volume of the active site of CYP2E1 fluctuates heavily, ranging from 220 to 1310 A(3), due to the opening and closing of gates to two adjacent cavities. CYP2E1 has the least hydrated active site of the studied CYPs; this is consistent with its preference for non-polar substrates. The CYP2A6 and CYP2E1 active sites are deeply buried, with access paths that are narrower than the radius of a water molecule. However, waters are still able to access these active sites due to local adaptations of the channel to accommodate their passage. This finding may imply that the access paths of the CYPs never fully open prior to contact with the substrate; instead, the substrate may induce adaptive conformational changes during its passage to the active site. This may also explain why some substrate recognition sites are localized along individual enzymes' access paths.

摘要

六种代谢活跃的哺乳动物细胞色素 P450(人 2A6、2C9、2D6、2E1、3A4 和兔 2B4)的灵活性、活性部位体积、溶剂化和进入途径动力学使用分子动力学(MD)模拟进行了广泛研究。平均而言,酶的整体结构在 50+ns 的时间尺度上达到平衡。非常开放的 CYP2B4 结构在模拟过程中缓慢关闭。在 MD 运行过程中,活性部位的体积波动超过 50%;这些波动主要是由于主链的运动引起的,只有少数氨基酸残基在 CYP2B4、CYP2D6、CYP2A6 和 CYP2C9 中显示出显著的独立侧链运动。由于两个相邻腔的门的打开和关闭,CYP2E1 的活性部位体积波动很大,范围从 220 到 1310A3。CYP2E1 具有研究的 CYP 中最不水合的活性部位;这与其对非极性底物的偏好一致。CYP2A6 和 CYP2E1 的活性部位深埋,进入途径比水分子的半径窄。然而,由于通道的局部适应以容纳其通过,水仍然能够进入这些活性部位。这一发现可能意味着在与底物接触之前,CYP 的进入途径从未完全打开;相反,底物可能在其进入活性部位的过程中诱导适应性构象变化。这也可以解释为什么一些底物识别位点定位于单个酶的进入途径沿线。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验