Biosystems Technology, University of Applied Sciences, Wildau 15745, Germany.
J Nanobiotechnology. 2011 Dec 30;9:59. doi: 10.1186/1477-3155-9-59.
For bioanalytical systems sensitivity and biomolecule activity are critical issues. The immobilization of proteins into multilayer systems by the layer-by-layer deposition has become one of the favorite methods with this respect. Moreover, the combination of nanoparticles with biomolecules on electrodes is a matter of particular interest since several examples with high activities and direct electron transfer have been found. Our study describes the investigation on silica nanoparticles and the redox protein cytochrome c for the construction of electro-active multilayer architectures, and the electron transfer within such systems. The novelty of this work is the construction of such artificial architectures with a non-conducting building block. Furthermore a detailed study of the size influence of silica nanoparticles is performed with regard to formation and electrochemical behavior of these systems.
We report on interprotein electron transfer (IET) reaction cascades of cytochrome c (cyt c) immobilized by the use of modified silica nanoparticles (SiNPs) to act as an artificial matrix. The layer-by-layer deposition technique has been used for the formation of silica particles/cytochrome c multilayer assemblies on electrodes. The silica particles are characterized by dynamic light scattering (DLS), Fourier transformed infrared spectroscopy (FT-IR), Zeta-potential and transmission electron microscopy (TEM). The modified particles have been studied with respect to act as an artificial network for cytochrome c and to allow efficient interprotein electron transfer reactions. We demonstrate that it is possible to form electro-active assemblies with these non-conducting particles. The electrochemical response is increasing linearly with the number of layers deposited, reaching a cyt c surface concentration of about 80 pmol/cm2 with a 5 layer architecture. The interprotein electron transfer through the layer system and the influence of particle size are discussed.
This study demonstrates the ability to construct fully electro-active cyt c multilayer assemblies by using carboxy-modified silica nanoparticles. Thus it can be shown that functional, artificial systems can be build up following natural examples of protein arrangements. The absence of any conductive properties in the second building block clearly demonstrates that mechanisms for electron transfer through such protein multilayer assemblies is based on interprotein electron exchange, rather than on wiring of the protein to the electrode.The construction strategy of this multilayer system provides a new controllable route to immobilize proteins in multiple layers featuring direct electrochemistry without mediating shuttle molecules and controlling the electro-active amount by the number of deposition steps.
对于生物分析系统来说,灵敏度和生物分子活性是至关重要的问题。通过层层沉积将蛋白质固定在多层系统中已成为具有这方面优势的首选方法之一。此外,将纳米粒子与电极上的生物分子结合在一起是一个特别引人关注的问题,因为已经发现了许多具有高活性和直接电子转移的例子。我们的研究描述了二氧化硅纳米粒子和氧化还原蛋白细胞色素 c 在构建电活性多层结构以及这些系统内电子转移方面的应用。这项工作的新颖之处在于使用非导电构建块构建这种人工结构。此外,还详细研究了纳米二氧化硅的尺寸对这些系统的形成和电化学行为的影响。
我们报告了细胞色素 c(cyt c)固定在经过修饰的二氧化硅纳米粒子(SiNPs)上作为人工基质时的蛋白质间电子转移(IET)反应级联。使用层层沉积技术在电极上形成二氧化硅粒子/细胞色素 c 多层组装。通过动态光散射(DLS)、傅里叶变换红外光谱(FT-IR)、Zeta 电位和透射电子显微镜(TEM)对二氧化硅颗粒进行了表征。研究了修饰后的颗粒作为细胞色素 c 的人工网络的作用以及允许高效的蛋白质间电子转移反应的能力。我们证明了使用这些非导电颗粒形成电活性组装体是可能的。电化学响应随沉积层数的增加呈线性增加,使用 5 层结构可达到约 80 pmol/cm2 的 cyt c 表面浓度。讨论了层系统中的蛋白质间电子转移和颗粒尺寸的影响。
这项研究证明了使用羧基修饰的二氧化硅纳米粒子构建完全电活性 cyt c 多层组装的能力。因此可以表明,功能型人工系统可以按照蛋白质排列的自然实例进行构建。第二个构建块没有任何导电特性清楚地表明,通过这种蛋白质多层组装进行电子转移的机制是基于蛋白质间的电子交换,而不是将蛋白质与电极连接。这种多层系统的构建策略提供了一种新的可控途径,可以在不使用介体分子的情况下将蛋白质固定在多层中,并且可以通过沉积步骤的数量来控制电活性量。