Suppr超能文献

一种规范的生物力学声带模型。

A canonical biomechanical vocal fold model.

机构信息

School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.

出版信息

J Voice. 2012 Sep;26(5):535-47. doi: 10.1016/j.jvoice.2011.09.001. Epub 2011 Dec 29.

Abstract

The present article aimed at constructing a canonical geometry of the human vocal fold (VF) from subject-specific image slice data. A computer-aided design approach automated the model construction. A subject-specific geometry available in literature, three abstractions (which successively diminished in geometric detail) derived from it, and a widely used quasi two-dimensional VF model geometry were used to create computational models. The first three natural frequencies of the models were used to characterize their mechanical response. These frequencies were determined for a representative range of tissue biomechanical properties, accounting for underlying VF histology. Compared with the subject-specific geometry model (baseline), a higher degree of abstraction was found to always correspond to a larger deviation in model frequency (up to 50% in the relevant range of tissue biomechanical properties). The model we deemed canonical was optimally abstracted, in that it significantly simplified the VF geometry compared with the baseline geometry but can be recalibrated in a consistent manner to match the baseline response. Models providing only a marginally higher degree of abstraction were found to have significant deviation in predicted frequency response. The quasi two-dimensional model presented an extreme situation: it could not be recalibrated for its frequency response to match the subject-specific model. This deficiency was attributed to complex support conditions at anterior-posterior extremities of the VFs, accentuated by further issues introduced through the tissue biomechanical properties. In creating canonical models by leveraging advances in clinical imaging techniques, the automated design procedure makes VF modeling based on subject-specific geometry more realizable.

摘要

本文旨在从特定于个体的图像切片数据中构建人声带(VF)的规范几何形状。一种计算机辅助设计方法实现了模型的自动构建。本文使用了文献中可用的特定于个体的几何形状、从其衍生的三个抽象(它们的几何细节依次减少)以及广泛使用的准二维 VF 模型几何形状来创建计算模型。模型的前三个固有频率用于表征其力学响应。这些频率是针对代表性的组织生物力学特性范围确定的,同时考虑了 VF 的组织学基础。与特定于个体的几何形状模型(基线)相比,发现更高程度的抽象总是对应于模型频率的更大偏差(在相关的组织生物力学特性范围内高达 50%)。我们认为规范的模型是最佳抽象的,因为它与基线几何形状相比显著简化了 VF 几何形状,但可以以一致的方式重新校准以匹配基线响应。发现提供仅略微更高抽象程度的模型在预测频率响应方面存在显著偏差。准二维模型呈现出一种极端情况:它无法通过重新校准其频率响应来匹配特定于个体的模型。这种缺陷归因于 VF 前后极端处的复杂支撑条件,通过组织生物力学特性引入的进一步问题加剧了这种情况。通过利用临床成像技术的进步来创建规范模型,自动化设计过程使得基于特定于个体的几何形状的 VF 建模更加可行。

相似文献

1
A canonical biomechanical vocal fold model.
J Voice. 2012 Sep;26(5):535-47. doi: 10.1016/j.jvoice.2011.09.001. Epub 2011 Dec 29.
2
Computational modeling of vibration-induced systemic hydration of vocal folds over a range of phonation conditions.
Int J Numer Method Biomed Eng. 2014 Oct;30(10):1019-43. doi: 10.1002/cnm.2642. Epub 2014 Apr 23.
3
Mechanical characterization of vocal fold tissue: a review study.
J Voice. 2014 Nov;28(6):657-67. doi: 10.1016/j.jvoice.2014.03.001. Epub 2014 Jul 5.
4
Modal response of a computational vocal fold model with a substrate layer of adipose tissue.
J Acoust Soc Am. 2015 Feb;137(2):EL158-64. doi: 10.1121/1.4905892.
5
Vocal fold contact pressure in a three-dimensional body-cover phonation model.
J Acoust Soc Am. 2019 Jul;146(1):256. doi: 10.1121/1.5116138.
7
Dependence of phonation threshold pressure and frequency on vocal fold geometry and biomechanics.
J Acoust Soc Am. 2010 Apr;127(4):2554-62. doi: 10.1121/1.3308410.
8
3D-Printed Synthetic Vocal Fold Models.
J Voice. 2021 Sep;35(5):685-694. doi: 10.1016/j.jvoice.2020.01.030. Epub 2020 Apr 17.
9
Characterizing liquid redistribution in a biphasic vibrating vocal fold using finite element analysis.
J Voice. 2015 May;29(3):265-72. doi: 10.1016/j.jvoice.2014.08.010. Epub 2015 Jan 22.
10
A computational study of systemic hydration in vocal fold collision.
Comput Methods Biomech Biomed Engin. 2014;17(16):1835-52. doi: 10.1080/10255842.2013.772591. Epub 2013 Mar 26.

引用本文的文献

1
Quantification of Porcine Vocal Fold Geometry.
J Voice. 2016 Jul;30(4):416-26. doi: 10.1016/j.jvoice.2015.06.009. Epub 2015 Aug 17.
2
The role of glottal surface adhesion on vocal folds biomechanics.
Biomech Model Mechanobiol. 2015 Apr;14(2):283-95. doi: 10.1007/s10237-014-0603-7. Epub 2014 Jul 18.

本文引用的文献

1
Optical measurements of vocal fold tensile properties: implications for phonatory mechanics.
J Biomech. 2011 Jun 3;44(9):1729-34. doi: 10.1016/j.jbiomech.2011.03.037. Epub 2011 Apr 15.
2
Spatially varying properties of the vocal ligament contribute to its eigenfrequency response.
J Mech Behav Biomed Mater. 2010 Nov;3(8):600-9. doi: 10.1016/j.jmbbm.2010.07.009. Epub 2010 Jul 27.
4
11.7 Tesla magnetic resonance microimaging of laryngeal tissue architecture.
Laryngoscope. 2009 Nov;119(11):2187-94. doi: 10.1002/lary.20643.
5
Three-dimensional educational computer model of the larynx: voicing a new direction.
Arch Otolaryngol Head Neck Surg. 2009 Jul;135(7):677-81. doi: 10.1001/archoto.2009.68.
6
Comparison of acceleration and impact stress as possible loading factors in phonation: a computer modeling study.
Folia Phoniatr Logop. 2009;61(3):137-45. doi: 10.1159/000219949. Epub 2009 Jul 1.
7
A fluid-saturated poroelastic model of the vocal folds with hydrated tissue.
J Biomech. 2009 Apr 16;42(6):774-80. doi: 10.1016/j.jbiomech.2008.12.006. Epub 2009 Mar 5.
8
Characteristics of phonation onset in a two-layer vocal fold model.
J Acoust Soc Am. 2009 Feb;125(2):1091-102. doi: 10.1121/1.3050285.
9
A computational study of the effect of false vocal folds on glottal flow and vocal fold vibration during phonation.
Ann Biomed Eng. 2009 Mar;37(3):625-42. doi: 10.1007/s10439-008-9630-9. Epub 2009 Jan 14.
10
Modeling of the transient responses of the vocal fold lamina propria.
J Mech Behav Biomed Mater. 2009 Jan;2(1):93-104. doi: 10.1016/j.jmbbm.2008.05.005.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验