Ding Feng, Furukawa Yoshiaki, Nukina Nobuyuki, Dokholyan Nikolay V
Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
J Mol Biol. 2012 Aug 24;421(4-5):548-60. doi: 10.1016/j.jmb.2011.12.029. Epub 2011 Dec 21.
Aggregation of Cu, Zn superoxide dismutase (SOD1) is often found in amyotrophic lateral sclerosis patients. The fibrillar aggregates formed by wild type and various disease-associated mutants have recently been found to have distinct cores and morphologies. Previous computational and experimental studies of wild-type SOD1 suggest that the apo-monomer, highly aggregation prone, displays substantial local unfolding dynamics. The residual folded structure of locally unfolded apoSOD1 corresponds to peptide segments forming the aggregation core as identified by a combination of proteolysis and mass spectroscopy. Therefore, we hypothesize that the destabilization of apoSOD1 caused by various mutations leads to distinct local unfolding dynamics. The partially unfolded structure, exposing the hydrophobic core and backbone hydrogen bond donors and acceptors, is prone to aggregate. The peptide segments in the residual folded structures form the "building block" for aggregation, which in turn determines the morphology of the aggregates. To test this hypothesis, we apply a multiscale simulation approach to study the aggregation of three typical SOD1 variants: wild type, G37R, and I149T. Each of these SOD1 variants has distinct peptide segments forming the core structure and features different aggregate morphologies. We perform atomistic molecular dynamics simulations to study the conformational dynamics of apoSOD1 monomer and coarse-grained molecular dynamics simulations to study the aggregation of partially unfolded SOD1 monomers. Our computational studies of monomer local unfolding and the aggregation of different SOD1 variants are consistent with experiments, supporting the hypothesis of the formation of aggregation "building blocks" via apo-monomer local unfolding as the mechanism of SOD1 fibrillar aggregation.
铜锌超氧化物歧化酶(SOD1)的聚集在肌萎缩侧索硬化症患者中经常被发现。最近发现,野生型和各种与疾病相关的突变体形成的纤维状聚集体具有不同的核心和形态。先前对野生型SOD1的计算和实验研究表明,易于聚集的脱辅基单体表现出大量的局部去折叠动力学。通过蛋白水解和质谱联用鉴定,局部去折叠的脱辅基SOD1的残余折叠结构对应于形成聚集核心的肽段。因此,我们假设由各种突变引起的脱辅基SOD1的不稳定导致不同的局部去折叠动力学。部分去折叠的结构暴露了疏水核心以及主链氢键供体和受体,易于聚集。残余折叠结构中的肽段形成聚集的“构建块”,进而决定聚集体的形态。为了验证这一假设,我们应用多尺度模拟方法研究三种典型SODI变体的聚集:野生型、G37R和I149T。这些SOD1变体中的每一个都有不同的肽段形成核心结构,并具有不同的聚集体形态。我们进行原子尺度的分子动力学模拟以研究脱辅基SOD1单体的构象动力学,并进行粗粒度分子动力学模拟以研究部分去折叠的SOD1单体的聚集。我们对单体局部去折叠和不同SOD1变体聚集的计算研究与实验结果一致,支持了通过脱辅基单体局部去折叠形成聚集“构建块”作为SOD1纤维状聚集机制的假设。