Suppr超能文献

米氏方程法中靶介导药物处置模型的剂量校正。

Dose correction for the Michaelis-Menten approximation of the target-mediated drug disposition model.

机构信息

Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, 565B Hochstetter Hall, Buffalo, NY 14260, USA.

出版信息

J Pharmacokinet Pharmacodyn. 2012 Apr;39(2):141-6. doi: 10.1007/s10928-011-9233-1. Epub 2012 Jan 4.

Abstract

The Michaelis-Menten (M-M) approximation of the target-mediated drug disposition (TMDD) pharmacokinetic (PK) model was derived based on the rapid binding (RB) or quasi steady-state (QSS) assumptions that implied that the target and drug binding and dissociation were in equilibrium. However, the initial dose for an IV bolus injection for the M-M model did not account for a fraction bound to the target. We postulated a correction to an initial condition that was consistent with the assumptions underlying the M-M approximation. We determined that the difference between the injected dose and one that should be used for the initial condition is equal to the amount of drug bound to the target upon reaching the equilibrium. We also observed that the corrected initial condition made the internalization rate constant an identifiable parameter that was not for the original M-M model. Finally, we performed a simulation exercise to check if the correction will impact the model performance and the bias of the M-M parameter estimates. We used literature data to simulate plasma drug concentrations described by the RB/QSS TMDD model. The simulated data were refitted by both models. All the parameters estimated from the original M-M model were substantially biased. On the other hand, the corrected M-M is able to accurately estimate these parameters except for equilibrium constant K(m). Weighted sum of square residual and Akaike information criterion suggested a better performance of the corrected M-M model compared with the original M-M model. Further studies are necessary to determine the importance of this correction for the M-M model applications to analysis of TMDD driven PK data.

摘要

基于快速结合(RB)或准稳态(QSS)假设,推导出了靶介导药物处置(TMDD)药代动力学(PK)模型的米氏-门限(M-M)近似,这些假设意味着靶和药物的结合和解离处于平衡状态。然而,M-M 模型中静脉推注的初始剂量并未考虑与靶结合的一部分。我们假设了一个与 M-M 近似假设基础一致的初始条件的修正。我们确定,注入剂量与初始条件下应使用的剂量之间的差异等于达到平衡时与靶结合的药物量。我们还观察到,修正后的初始条件使内化速率常数成为一个可识别的参数,而不是原始 M-M 模型的参数。最后,我们进行了一项模拟练习,以检查修正是否会影响模型性能和 M-M 参数估计的偏差。我们使用文献中的数据模拟了 RB/QSS TMDD 模型描述的血浆药物浓度。使用这两种模型对模拟数据进行了重新拟合。原始 M-M 模型估计的所有参数都存在显著偏差。另一方面,修正后的 M-M 模型能够准确地估计这些参数,除了平衡常数 K(m)。加权平方和残差和赤池信息量准则表明,与原始 M-M 模型相比,修正后的 M-M 模型的性能更好。需要进一步的研究来确定这种修正对于 M-M 模型在分析 TMDD 驱动的 PK 数据中的应用的重要性。

相似文献

1
Dose correction for the Michaelis-Menten approximation of the target-mediated drug disposition model.
J Pharmacokinet Pharmacodyn. 2012 Apr;39(2):141-6. doi: 10.1007/s10928-011-9233-1. Epub 2012 Jan 4.
3
Target-mediated drug disposition model for drugs that bind to more than one target.
J Pharmacokinet Pharmacodyn. 2010 Aug;37(4):323-46. doi: 10.1007/s10928-010-9163-3. Epub 2010 Jul 29.
4
Approximations of the target-mediated drug disposition model and identifiability of model parameters.
J Pharmacokinet Pharmacodyn. 2008 Oct;35(5):573-91. doi: 10.1007/s10928-008-9102-8. Epub 2008 Nov 13.
5
Target-mediated drug disposition model for drugs with two binding sites that bind to a target with one binding site.
J Pharmacokinet Pharmacodyn. 2017 Oct;44(5):463-475. doi: 10.1007/s10928-017-9533-1. Epub 2017 Jul 19.
6
Dynamics of target-mediated drug disposition.
Eur J Pharm Sci. 2009 Dec 8;38(5):445-64. doi: 10.1016/j.ejps.2009.09.007. Epub 2009 Sep 26.
7
Dynamics of target-mediated drug disposition: characteristic profiles and parameter identification.
J Pharmacokinet Pharmacodyn. 2012 Oct;39(5):429-51. doi: 10.1007/s10928-012-9260-6. Epub 2012 Aug 1.
8
Numerical validation and properties of a rapid binding approximation of a target-mediated drug disposition pharmacokinetic model.
J Pharmacokinet Pharmacodyn. 2009 Jun;36(3):199-219. doi: 10.1007/s10928-009-9118-8. Epub 2009 May 12.
9
Target-mediated drug disposition model for drugs with N > 2 binding sites that bind to a target with one binding site.
J Pharmacokinet Pharmacodyn. 2024 Dec;51(6):703-720. doi: 10.1007/s10928-024-09917-8. Epub 2024 Apr 19.
10
Impact of dose selection on parameter estimation using a rapid binding approximation model of target-mediated drug disposition.
J Pharmacokinet Pharmacodyn. 2011 Apr;38(2):223-35. doi: 10.1007/s10928-010-9190-0. Epub 2010 Dec 17.

引用本文的文献

3
Mathematical description of drug-target interactions: application to biologics that bind to targets with two binding sites.
J Pharmacokinet Pharmacodyn. 2018 Feb;45(1):23-34. doi: 10.1007/s10928-017-9546-9. Epub 2017 Sep 16.
4
Systems pharmacology and enhanced pharmacodynamic models for understanding antibody-based drug action and toxicity.
MAbs. 2017 Jan;9(1):15-28. doi: 10.1080/19420862.2016.1238995. Epub 2016 Sep 23.
5
A Tutorial on Target-Mediated Drug Disposition (TMDD) Models.
CPT Pharmacometrics Syst Pharmacol. 2015 Jun;4(6):324-37. doi: 10.1002/psp4.41. Epub 2015 Jun 15.
6
Clinical pharmacokinetics and pharmacodynamics of erythropoiesis-stimulating agents.
Clin Pharmacokinet. 2013 Dec;52(12):1063-83. doi: 10.1007/s40262-013-0098-x.

本文引用的文献

2
Selection between Michaelis-Menten and target-mediated drug disposition pharmacokinetic models.
J Pharmacokinet Pharmacodyn. 2010 Feb;37(1):25-47. doi: 10.1007/s10928-009-9142-8. Epub 2009 Dec 10.
3
Approximations of the target-mediated drug disposition model and identifiability of model parameters.
J Pharmacokinet Pharmacodyn. 2008 Oct;35(5):573-91. doi: 10.1007/s10928-008-9102-8. Epub 2008 Nov 13.
4
Quasi-equilibrium pharmacokinetic model for drugs exhibiting target-mediated drug disposition.
Pharm Res. 2005 Oct;22(10):1589-96. doi: 10.1007/s11095-005-6650-0. Epub 2005 Sep 22.
5
General pharmacokinetic model for drugs exhibiting target-mediated drug disposition.
J Pharmacokinet Pharmacodyn. 2001 Dec;28(6):507-32. doi: 10.1023/a:1014414520282.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验