a Preclinical Translational Pharmacokinetics Department.
b Translational Oncology Department.
MAbs. 2018 Jul;10(5):738-750. doi: 10.1080/19420862.2018.1465160. Epub 2018 May 18.
For antibody-drug conjugates (ADCs) that carry a cytotoxic drug, doses that can be administered in preclinical studies are typically limited by tolerability, leading to a narrow dose range that can be tested. For molecules with non-linear pharmacokinetics (PK), this limited dose range may be insufficient to fully characterize the PK of the ADC and limits translation to humans. Mathematical PK models are frequently used for molecule selection during preclinical drug development and for translational predictions to guide clinical study design. Here, we present a practical approach that uses limited PK and receptor occupancy (RO) data of the corresponding unconjugated antibody to predict ADC PK when conjugation does not alter the non-specific clearance or the antibody-target interaction. We used a 2-compartment model incorporating non-specific and specific (target mediated) clearances, where the latter is a function of RO, to describe the PK of anti-CD33 ADC with dose-limiting neutropenia in cynomolgus monkeys. We tested our model by comparing PK predictions based on the unconjugated antibody to observed ADC PK data that was not utilized for model development. Prospective prediction of human PK was performed by incorporating in vitro binding affinity differences between species for varying levels of CD33 target expression. Additionally, this approach was used to predict human PK of other previously tested anti-CD33 molecules with published clinical data. The findings showed that, for a cytotoxic ADC with non-linear PK and limited preclinical PK data, incorporating RO in the PK model and using data from the corresponding unconjugated antibody at higher doses allowed the identification of parameters to characterize monkey PK and enabled human PK predictions.
对于携带细胞毒性药物的抗体药物偶联物(ADC),在临床前研究中可给予的剂量通常受到耐受性的限制,导致可测试的剂量范围很窄。对于具有非线性药代动力学(PK)的分子,这种有限的剂量范围可能不足以充分描述 ADC 的 PK 特性,并限制了向人类的转化。数学 PK 模型通常用于临床前药物开发中的分子选择以及转化预测,以指导临床研究设计。在这里,我们提出了一种实用的方法,该方法使用相应未缀合抗体的有限 PK 和受体占有率(RO)数据来预测缀合后不会改变非特异性清除率或抗体-靶标相互作用的 ADC PK。我们使用了一个包含非特异性和特异性(靶向介导)清除率的 2 隔室模型,其中后者是 RO 的函数,以描述在食蟹猴中具有剂量限制中性粒细胞减少的抗 CD33 ADC 的 PK。我们通过将基于未缀合抗体的 PK 预测与未用于模型开发的观察到的 ADC PK 数据进行比较来检验我们的模型。通过在不同 CD33 靶标表达水平下纳入种间结合亲和力差异,进行了前瞻性的人类 PK 预测。此外,该方法还用于预测具有已发表临床数据的其他先前测试过的抗 CD33 分子的人类 PK。研究结果表明,对于具有非线性 PK 和有限临床前 PK 数据的细胞毒性 ADC,在 PK 模型中纳入 RO,并在更高剂量下使用相应未缀合抗体的数据,可以确定用于表征猴子 PK 的参数,并能够进行人类 PK 预测。