Suppr超能文献

Cdc42 蛋白的 C 端二精氨酸基序对于与含有磷脂酰肌醇 4,5-二磷酸的膜结合和诱导细胞转化是必需的。

C-terminal di-arginine motif of Cdc42 protein is essential for binding to phosphatidylinositol 4,5-bisphosphate-containing membranes and inducing cellular transformation.

机构信息

Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA.

出版信息

J Biol Chem. 2012 Feb 17;287(8):5764-74. doi: 10.1074/jbc.M111.336487. Epub 2012 Jan 3.

Abstract

Rho GTPases regulate a diverse range of processes that are dependent on their proper cellular localization. The membrane localization of these GTPases is due in large part to their carboxyl-terminal geranylgeranyl moiety. In addition, most of the Rho family members contain a cluster of positively charged residues (i.e. a "polybasic domain"), directly preceding their geranylgeranyl moiety, and it has been suggested that this domain serves to fine-tune their localization among different cellular membrane sites. Here, we have taken a closer look at the role of the polybasic domain of Cdc42 in its ability to bind to membranes and induce the transformation of fibroblasts. A FRET assay for the binding of Cdc42 to liposomes of defined composition showed that Cdc42 associates more strongly with liposomes containing phosphatidylinositol 4,5-bisphosphate (PIP(2)) when compared either with uncharged control membranes or with liposomes containing a charge-equivalent amount of phosphatidylserine. The carboxyl-terminal di-arginine motif (Arg-186 and Arg-187) was shown to play an essential role in the binding of Cdc42 to PIP(2)-containing membranes. We further showed that substitutions for the di-arginine motif, when introduced within a constitutively active ("fast cycling") Cdc42(F28L) background, had little effect on the ability of the activated Cdc42 mutant to induce microspikes/filopodia in NIH 3T3 cells, whereas they eliminated its ability to transform fibroblasts. Taken together, these findings suggest that the di-arginine motif within the carboxyl terminus of Cdc42 is necessary for this GTPase to bind at membrane sites containing PIP(2), where it can initiate signaling activities that are essential for the oncogenic transformation of cells.

摘要

Rho GTPases 调节多种依赖于其正确细胞定位的过程。这些 GTPases 的膜定位在很大程度上归因于它们羧基末端的香叶基香叶基部分。此外,大多数 Rho 家族成员包含一个正电荷残基簇(即“多碱性结构域”),直接位于它们的香叶基香叶基部分之前,并且有人提出该结构域有助于微调它们在不同细胞膜部位的定位。在这里,我们更仔细地研究了 Cdc42 的多碱性结构域在其与膜结合并诱导成纤维细胞转化的能力中的作用。用于测定 Cdc42 与具有明确定义组成的脂质体结合的 FRET 测定法表明,与不带电的对照膜或含有电荷等效量的磷脂酰丝氨酸的脂质体相比,Cdc42 与含有磷脂酰肌醇 4,5-二磷酸(PIP(2))的脂质体结合更强。羧基末端的二精氨酸基序(Arg-186 和 Arg-187)被证明在 Cdc42 与含有 PIP(2)的膜结合中发挥重要作用。我们进一步表明,在组成型活性(“快速循环”)Cdc42(F28L)背景下引入的多碱性结构域取代物对激活的 Cdc42 突变体诱导 NIH 3T3 细胞微刺/丝状伪足的能力几乎没有影响,而消除了其转化成纤维细胞的能力。总之,这些发现表明,Cdc42 羧基末端的二精氨酸基序对于该 GTPase 结合含有 PIP(2)的膜位点是必需的,在该位点它可以启动对细胞致癌转化至关重要的信号转导活性。

相似文献

2
Synergistic activation of p21-activated kinase 1 by phosphatidylinositol 4,5-bisphosphate and Rho GTPases.
J Biol Chem. 2013 Mar 29;288(13):8887-97. doi: 10.1074/jbc.M112.428904. Epub 2013 Feb 7.
4
RhoGDI is required for Cdc42-mediated cellular transformation.
Curr Biol. 2003 Sep 2;13(17):1469-79. doi: 10.1016/s0960-9822(03)00613-4.
6
Influencing cellular transformation by modulating the rates of GTP hydrolysis by Cdc42.
Biochemistry. 2006 Jun 27;45(25):7750-62. doi: 10.1021/bi060365h.
7
Cdc42 and Ras cooperate to mediate cellular transformation by intersectin-L.
J Biol Chem. 2005 Jun 17;280(24):22883-91. doi: 10.1074/jbc.M414375200. Epub 2005 Apr 11.
9
EFC/F-BAR proteins and the N-WASP-WIP complex induce membrane curvature-dependent actin polymerization.
EMBO J. 2008 Nov 5;27(21):2817-28. doi: 10.1038/emboj.2008.216. Epub 2008 Oct 16.

引用本文的文献

2
Atypical Protein Kinase C Promotes its own Asymmetric Localisation by Phosphorylating Cdc42 in the zygote.
bioRxiv. 2024 Jun 14:2023.10.27.563985. doi: 10.1101/2023.10.27.563985.
3
mTORC2-NDRG1-CDC42 axis couples fasting to mitochondrial fission.
Nat Cell Biol. 2023 Jul;25(7):989-1003. doi: 10.1038/s41556-023-01163-3. Epub 2023 Jun 29.
4
Repair of traumatic lesions to the plasmalemma of neurons and other cells: Commonalities, conflicts, and controversies.
Front Physiol. 2023 Mar 15;14:1114779. doi: 10.3389/fphys.2023.1114779. eCollection 2023.
5
Why Does Synergistic Activation of WASP, but Not N-WASP, by Cdc42 and PIP Require Cdc42 Prenylation?
J Mol Biol. 2023 Apr 15;435(8):168035. doi: 10.1016/j.jmb.2023.168035. Epub 2023 Feb 28.
6
Lipidation of small GTPase Cdc42 as regulator of its physiological and pathophysiological functions.
Front Physiol. 2023 Jan 9;13:1088840. doi: 10.3389/fphys.2022.1088840. eCollection 2022.
7
The role of cell division control protein 42 in tumor and non-tumor diseases: A systematic review.
J Cancer. 2022 Jan 1;13(3):800-814. doi: 10.7150/jca.65415. eCollection 2022.
8
9
Molecular subversion of Cdc42 signalling in cancer.
Biochem Soc Trans. 2021 Jun 30;49(3):1425-1442. doi: 10.1042/BST20200557.
10
Ceramide-1-phosphate transfer protein (CPTP) regulation by phosphoinositides.
J Biol Chem. 2021 Jan-Jun;296:100600. doi: 10.1016/j.jbc.2021.100600. Epub 2021 Mar 26.

本文引用的文献

1
Membrane protein sequestering by ionic protein-lipid interactions.
Nature. 2011 Oct 23;479(7374):552-5. doi: 10.1038/nature10545.
3
Cancer cell-derived microvesicles induce transformation by transferring tissue transglutaminase and fibronectin to recipient cells.
Proc Natl Acad Sci U S A. 2011 Mar 22;108(12):4852-7. doi: 10.1073/pnas.1017667108. Epub 2011 Feb 28.
4
RhoA can lead the way in tumor cell invasion and metastasis.
Front Biosci (Landmark Ed). 2011 Jan 1;16(5):1915-26. doi: 10.2741/3830.
5
Phosphatidylinositol-4,5-bisphosphate promotes budding yeast septin filament assembly and organization.
J Mol Biol. 2010 Dec 10;404(4):711-31. doi: 10.1016/j.jmb.2010.10.002. Epub 2010 Oct 15.
6
Cdc42 and vesicle trafficking in polarized cells.
Traffic. 2010 Oct;11(10):1272-9. doi: 10.1111/j.1600-0854.2010.01102.x.
8
New insights into how the Rho guanine nucleotide dissociation inhibitor regulates the interaction of Cdc42 with membranes.
J Biol Chem. 2009 Aug 28;284(35):23860-71. doi: 10.1074/jbc.M109.031815. Epub 2009 Jul 6.
10
Neural palmitoyl-proteomics reveals dynamic synaptic palmitoylation.
Nature. 2008 Dec 18;456(7224):904-9. doi: 10.1038/nature07605.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验