Huber Heinrich J, Connolly Niamh M C, Dussmann Heiko, Prehn Jochen H M
Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
Mol Biosyst. 2012 Mar;8(3):828-42. doi: 10.1039/c2mb05434e. Epub 2012 Jan 5.
We devised an approach to extract control principles of cellular bioenergetics for intact and impaired mitochondria from ODE-based models and applied it to a recently established bioenergetic model of cancer cells. The approach used two methods for varying ODE model parameters to determine those model components that, either alone or in combination with other components, most decisively regulated bioenergetic state variables. We found that, while polarisation of the mitochondrial membrane potential (ΔΨ(m)) and, therefore, the protomotive force were critically determined by respiratory complex I activity in healthy mitochondria, complex III activity was dominant for ΔΨ(m) during conditions of cytochrome-c deficiency. As a further important result, cellular bioenergetics in healthy, ATP-producing mitochondria was regulated by three parameter clusters that describe (1) mitochondrial respiration, (2) ATP production and consumption and (3) coupling of ATP-production and respiration. These parameter clusters resembled metabolic blocks and their intermediaries from top-down control analyses. However, parameter clusters changed significantly when cells changed from low to high ATP levels or when mitochondria were considered to be impaired by loss of cytochrome-c. This change suggests that the assumption of static metabolic blocks by conventional top-down control analyses is not valid under these conditions. Our approach is complementary to both ODE and top-down control analysis approaches and allows a better insight into cellular bioenergetics and its pathological alterations.
我们设计了一种方法,用于从基于常微分方程(ODE)的模型中提取完整和受损线粒体的细胞生物能量学控制原理,并将其应用于最近建立的癌细胞生物能量学模型。该方法使用了两种改变ODE模型参数的方法,以确定那些单独或与其他组件组合时,对生物能量状态变量调控最具决定性的模型组件。我们发现,虽然线粒体膜电位(ΔΨ(m))的极化以及因此的质子动力势在健康线粒体中由呼吸复合体I的活性严格决定,但在细胞色素c缺乏的情况下,复合体III的活性对ΔΨ(m)起主导作用。作为另一个重要结果,健康的、产生ATP的线粒体中的细胞生物能量学由三个参数簇调节,这些参数簇描述了(1)线粒体呼吸、(2)ATP的产生和消耗以及(3)ATP产生与呼吸的偶联。这些参数簇类似于自上而下控制分析中的代谢模块及其中间体。然而,当细胞从低ATP水平转变为高ATP水平时,或者当线粒体被认为因细胞色素c的丧失而受损时,参数簇会发生显著变化。这种变化表明,传统自上而下控制分析中静态代谢模块的假设在这些条件下是无效的。我们的方法与ODE和自上而下控制分析方法互补,能够更好地洞察细胞生物能量学及其病理改变。