Suppr超能文献

在非洲爪蟾中进行吗啉代寡核苷酸注射。

Morpholino injection in Xenopus.

作者信息

Tandon Panna, Showell Chris, Christine Kathleen, Conlon Frank L

机构信息

Department of Genetics, UNC McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

出版信息

Methods Mol Biol. 2012;843:29-46. doi: 10.1007/978-1-61779-523-7_4.

Abstract

The study of gene function in developmental biology has been significantly furthered by advances in antisense technology made in the early 2000s. This was achieved, in particular, by the introduction of morpholino (MO) oligonucleotides. The introduction of antisense MO oligonucleotides into cells enables researchers to readily reduce the levels of their protein of interest without investing huge financial or temporal resources, in both in vivo and in vitro model systems. Historically, the African clawed frog Xenopus has been used to study vertebrate embryological development, due to its ability to produce vast numbers of offspring that develop rapidly, in synchrony, and can be cultured in buffers with ease. The developmental progress of Xenopus embryos has been extensively characterized and this model organism is very easy to maintain. It is these attributes that enable MO-based knockdown strategies to be so effective in Xenopus. In this chapter, we will detail the methods of microinjecting MO oligonucleotides into early embryos of X. laevis and X. tropicalis. We will discuss how MOs can be used to prevent either pre-mRNA splicing or translation of the specific gene of interest resulting in abrogation of that gene's function and advise on what control experiments should be undertaken to verify their efficacy.

摘要

21世纪初反义技术的进步极大地推动了发育生物学中基因功能的研究。特别是通过引入吗啉代(MO)寡核苷酸实现了这一点。将反义MO寡核苷酸导入细胞使研究人员能够在体内和体外模型系统中,轻松降低目标蛋白的水平,而无需投入大量资金或时间资源。从历史上看,非洲爪蟾由于能够产生大量后代,这些后代发育迅速、同步且易于在缓冲液中培养,因此一直被用于研究脊椎动物胚胎发育。非洲爪蟾胚胎的发育过程已得到广泛表征,并且这种模式生物非常易于饲养。正是这些特性使得基于MO的敲低策略在非洲爪蟾中如此有效。在本章中,我们将详细介绍将MO寡核苷酸显微注射到非洲爪蟾和热带爪蟾早期胚胎中的方法。我们将讨论如何使用MO来阻止特定目标基因的前体mRNA剪接或翻译,从而导致该基因功能的丧失,并就应进行哪些对照实验以验证其有效性提供建议。

相似文献

1
Morpholino injection in Xenopus.
Methods Mol Biol. 2012;843:29-46. doi: 10.1007/978-1-61779-523-7_4.
2
Reverse genetic studies using antisense morpholino oligonucleotides.
Methods Mol Biol. 2012;917:143-54. doi: 10.1007/978-1-61779-992-1_8.
3
Innate Immune Response and Off-Target Mis-splicing Are Common Morpholino-Induced Side Effects in Xenopus.
Dev Cell. 2018 Mar 12;44(5):597-610.e10. doi: 10.1016/j.devcel.2018.01.022. Epub 2018 Feb 22.
5
Manipulation of gene function in Xenopus laevis.
Methods Mol Biol. 2011;770:55-75. doi: 10.1007/978-1-61779-210-6_3.
6
Morpholino Studies in Xenopus Brain Development.
Methods Mol Biol. 2020;2047:377-395. doi: 10.1007/978-1-4939-9732-9_21.
7
Identification and developmental expression of Xenopus laevis SUMO proteases.
PLoS One. 2009 Dec 24;4(12):e8462. doi: 10.1371/journal.pone.0008462.
8
Morpholino studies in Xenopus brain development.
Methods Mol Biol. 2014;1082:155-71. doi: 10.1007/978-1-62703-655-9_11.
9
Targeted microinjection of synthetic mRNAs to alter retina gene expression in Xenopus embryos.
Methods Mol Biol. 2012;884:91-111. doi: 10.1007/978-1-61779-848-1_6.
10
Microinjection manipulations in the elucidation of Xenopus brain development.
Methods Mol Biol. 2014;1082:143-54. doi: 10.1007/978-1-62703-655-9_10.

引用本文的文献

1
Tissue-specific in vivo transformation of plasmid DNA in Neotropical tadpoles using electroporation.
PLoS One. 2023 Aug 17;18(8):e0289361. doi: 10.1371/journal.pone.0289361. eCollection 2023.
2
The Many Faces of : as a Model System to Study Wolf-Hirschhorn Syndrome.
Front Physiol. 2019 Jun 26;10:817. doi: 10.3389/fphys.2019.00817. eCollection 2019.
3
Evolutionarily conserved - pathway orchestrates cardiopulmonary development.
Proc Natl Acad Sci U S A. 2018 Nov 6;115(45):E10615-E10624. doi: 10.1073/pnas.1811624115. Epub 2018 Oct 23.
4
Transgenic Xenopus laevis Line for In Vivo Labeling of Nephrons within the Kidney.
Genes (Basel). 2018 Apr 6;9(4):197. doi: 10.3390/genes9040197.
6
The Lhx9-integrin pathway is essential for positioning of the proepicardial organ.
Development. 2016 Mar 1;143(5):831-40. doi: 10.1242/dev.129551. Epub 2016 Jan 25.
7
Identifying Regulators of Morphogenesis Common to Vertebrate Neural Tube Closure and Caenorhabditis elegans Gastrulation.
Genetics. 2016 Jan;202(1):123-39. doi: 10.1534/genetics.115.183137. Epub 2015 Oct 4.
8
Budgett's frog (Lepidobatrachus laevis): A new amphibian embryo for developmental biology.
Dev Biol. 2015 Sep 15;405(2):291-303. doi: 10.1016/j.ydbio.2015.06.007. Epub 2015 Jul 11.
9
A distinct mechanism of vascular lumen formation in Xenopus requires EGFL7.
PLoS One. 2015 Feb 23;10(2):e0116086. doi: 10.1371/journal.pone.0116086. eCollection 2015.
10
Congenital heart disease protein 5 associates with CASZ1 to maintain myocardial tissue integrity.
Development. 2014 Aug;141(15):3040-9. doi: 10.1242/dev.106518. Epub 2014 Jul 3.

本文引用的文献

1
Lessons from the lily pad: Using Xenopus to understand heart disease.
Drug Discov Today Dis Models. 2008 Fall;5(3):141-146. doi: 10.1016/j.ddmod.2009.02.006.
2
A primer for morpholino use in zebrafish.
Zebrafish. 2009 Mar;6(1):69-77. doi: 10.1089/zeb.2008.0555.
3
Cardiac differentiation in Xenopus requires the cyclin-dependent kinase inhibitor, p27Xic1.
Cardiovasc Res. 2008 Aug 1;79(3):436-47. doi: 10.1093/cvr/cvn105. Epub 2008 Apr 27.
4
Using morpholinos to control gene expression.
Curr Protoc Nucleic Acid Chem. 2007 Jan;Chapter 4(1):Unit 4.30. doi: 10.1002/0471142700.nc0430s27.
5
Vertebrate CASTOR is required for differentiation of cardiac precursor cells at the ventral midline.
Dev Cell. 2008 Apr;14(4):616-23. doi: 10.1016/j.devcel.2008.01.009.
6
Controlling morpholino experiments: don't stop making antisense.
Development. 2008 May;135(10):1735-43. doi: 10.1242/dev.001115. Epub 2008 Apr 9.
7
HIF-1alpha signaling upstream of NKX2.5 is required for cardiac development in Xenopus.
J Biol Chem. 2008 Apr 25;283(17):11841-9. doi: 10.1074/jbc.M702563200. Epub 2008 Feb 25.
8
Electroporation of cDNA/Morpholinos to targeted areas of embryonic CNS in Xenopus.
BMC Dev Biol. 2007 Sep 27;7:107. doi: 10.1186/1471-213X-7-107.
9
Left-sided embryonic expression of the BCL-6 corepressor, BCOR, is required for vertebrate laterality determination.
Hum Mol Genet. 2007 Jul 15;16(14):1773-82. doi: 10.1093/hmg/ddm125. Epub 2007 May 21.
10
Achieving targeted and quantifiable alteration of mRNA splicing with Morpholino oligos.
Biochem Biophys Res Commun. 2007 Jun 29;358(2):521-7. doi: 10.1016/j.bbrc.2007.04.172. Epub 2007 May 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验