School of Physics, Damghan University, Damghan, Iran.
J Phys Condens Matter. 2012 Feb 1;24(4):045303. doi: 10.1088/0953-8984/24/4/045303.
We study spin dependent transport through a magnetic bilayer graphene nanojunction configured as a two-dimensional normal/ferromagnetic/normal structure where the gate voltage is applied on the layers of ferromagnetic graphene. Based on the four-band Hamiltonian, conductance is calculated by using the Landauer-Buttiker formula at zero temperature. For a parallel configuration of the ferromagnetic layers of bilayer graphene, the energy band structure is metallic and spin polarization reaches its maximum value close to the resonant states, while for an antiparallel configuration the nanojunction behaves as a semiconductor and there is no spin filtering. As a result, a huge magnetoresistance is achievable by altering the configurations of ferromagnetic graphene around the band gap.
我们研究了通过配置为二维正常/铁磁/正常结构的磁性双层石墨烯纳米结的自旋相关输运,其中栅极电压施加在铁磁石墨烯的层上。基于四能带哈密顿量,在零温度下使用兰道尔-布特基公式计算电导。对于双层石墨烯的铁磁层平行配置,能带结构是金属的,自旋极化在接近共振态时达到最大值,而对于反平行配置,纳米结表现为半导体,没有自旋过滤。因此,通过改变带隙周围铁磁石墨烯的配置,可以实现巨大的磁电阻。