Department of Chemistry, Lewis University, Romeoville, IL 60446, United States.
Forensic Sci Int. 2012 Jun 10;219(1-3):101-5. doi: 10.1016/j.forsciint.2011.12.005. Epub 2012 Jan 5.
Forensic scientists use several presumptive tests to detect latent blood stains at crime scenes; one of the most recognizable being the luminol reagent. Luminol, under basic conditions, reacts with an oxidizing species which, with the help of a transition metal catalyst facilitates a luminescent response. The typical oxidizing species used in the luminol reaction is hydrogen peroxide (H(2)O(2)). While the luminol reaction has been studied since its inception, the mechanistic pathway is still an area of great debate. Previous work suggests that the luminol reaction with latent blood stains possesses a correlation to the Fenton-Decomposition reaction mechanism, which decomposes H(2)O(2) into the strongly oxidizing hydroxyl radical (*OH) species. This work seeks to understand the luminol reaction on a mechanistic level and to determine if a synergy exists between the chemiluminescence observed in the reaction and the production of the hydroxyl radical via Fenton-like processes. Results indicate that organo-metallic complexes produce hydroxyl radicals at different rates and different concentrations. These findings appear to be related to structural differences in the organo-metallic complex, which conform to the 18 electron rule or are one electron rich/deficient. Furthermore, the production of *OH is controlled by the chemical environment which governs complex stability at high pH conditions, reflective of the luminol process. Model hemoglobin systems reveal a strong correlation between the rate of *OH production via the Fenton-like pathway and maximum chemiluminescent intensity.
法医科学家使用几种初步测试在犯罪现场检测潜在的血迹;其中最著名的是鲁米诺试剂。鲁米诺在碱性条件下与一种氧化物质反应,在过渡金属催化剂的帮助下,产生发光反应。鲁米诺反应中常用的典型氧化剂是过氧化氢(H(2)O(2))。虽然鲁米诺反应自成立以来一直受到研究,但反应的机制途径仍然是一个争议很大的领域。先前的工作表明,鲁米诺与潜在血迹的反应与芬顿-分解反应机制有关,该机制将 H(2)O(2)分解为强氧化的羟基自由基(*OH)物种。这项工作旨在从机制层面理解鲁米诺反应,并确定在反应中观察到的化学发光与通过类芬顿过程产生的羟基自由基之间是否存在协同作用。结果表明,有机金属配合物以不同的速率和不同的浓度产生羟基自由基。这些发现似乎与有机金属配合物的结构差异有关,这些差异符合 18 电子规则或一电子富/缺。此外,*OH 的产生受化学环境控制,该环境控制在高 pH 条件下的配合物稳定性,反映了鲁米诺的过程。模型血红蛋白系统揭示了通过类芬顿途径产生 *OH 的速率与最大化学发光强度之间存在很强的相关性。