Suppr超能文献

视频跟踪器的自适应在线性能评估。

Adaptive online performance evaluation of video trackers.

机构信息

TEC Department, Universidad Autónoma de Madrid, 28049 Madrid, Spain.

出版信息

IEEE Trans Image Process. 2012 May;21(5):2812-23. doi: 10.1109/TIP.2011.2182520. Epub 2012 Jan 2.

Abstract

We propose an adaptive framework to estimate the quality of video tracking algorithms without ground-truth data. The framework is divided into two main stages, namely, the estimation of the tracker condition to identify temporal segments during which a target is lost and the measurement of the quality of the estimated track when the tracker is successful. A key novelty of the proposed framework is the capability of evaluating video trackers with multiple failures and recoveries over long sequences. Successful tracking is identified by analyzing the uncertainty of the tracker, whereas track recovery from errors is determined based on the time-reversibility constraint. The proposed approach is demonstrated on a particle filter tracker over a heterogeneous data set. Experimental results show the effectiveness and robustness of the proposed framework that improves state-of-the-art approaches in the presence of tracking challenges such as occlusions, illumination changes, and clutter and on sequences containing multiple tracking errors and recoveries.

摘要

我们提出了一种自适应框架,用于在没有地面实况数据的情况下估计视频跟踪算法的质量。该框架分为两个主要阶段,即估计跟踪器条件以识别目标丢失的时间段,以及在跟踪器成功时测量估计轨迹的质量。所提出框架的一个关键新颖之处在于能够评估具有多个失败和恢复的长时间序列的视频跟踪器。成功的跟踪通过分析跟踪器的不确定性来识别,而从错误中恢复跟踪则基于时间可逆性约束来确定。所提出的方法在异构数据集上的粒子滤波器跟踪器上进行了演示。实验结果表明,该框架在存在跟踪挑战(如遮挡、光照变化和杂波)的情况下,以及在包含多个跟踪错误和恢复的序列上,都具有有效性和鲁棒性,优于现有方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验