Suppr超能文献

基于几何约束的增量模型估计

Incremental model-based estimation using geometric constraints.

作者信息

Sminchisescu Cristian, Metaxas Dimitris, Dickinson Sven

机构信息

Artificial Intelligence Laboratory, Department of Computer Science, University of Toronto, 6 King's College Road, Pratt Building, Rm. 276, Toronto, Ontario, Canada, M5S 3G4.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2005 May;27(5):727-38. doi: 10.1109/TPAMI.2005.104.

Abstract

We present a model-based framework for incremental, adaptive object shape estimation and tracking in monocular image sequences. Parametric structure and motion estimation methods usually assume a fixed class of shape representation (splines, deformable superquadrics, etc.) that is initialized prior to tracking. Since the model shape coverage is fixed a priori, the incremental recovery of structure is decoupled from tracking, thereby limiting both processes in their scope and robustness. In this work, we describe a model-based framework that supports the automatic detection and integration of low-level geometric primitives (lines) incrementally. Such primitives are not explicitly captured in the initial model, but are moving consistently with its image motion. The consistency tests used to identify new structure are based on trinocular constraints between geometric primitives. The method allows not only an increase in the model scope, but also improves tracking accuracy by including the newly recovered features in its state estimation. The formulation is a step toward automatic model building, since it allows both weaker assumptions on the availability of a prior shape representation and on the number of features that would otherwise be necessary for entirely bottom-up reconstruction. We demonstrate the proposed approach on two separate image-based tracking domains, each involving complex 3D object structure and motion.

摘要

我们提出了一种基于模型的框架,用于在单目图像序列中进行增量式自适应目标形状估计和跟踪。参数化结构和运动估计方法通常假定在跟踪之前初始化一类固定的形状表示(样条、可变形超二次曲面等)。由于模型形状覆盖范围是先验固定的,结构的增量恢复与跟踪解耦,从而限制了这两个过程的范围和鲁棒性。在这项工作中,我们描述了一个基于模型的框架,该框架支持增量式自动检测和集成低级几何基元(直线)。此类基元在初始模型中未被明确捕获,但与模型的图像运动一致移动。用于识别新结构的一致性测试基于几何基元之间的三目约束。该方法不仅允许扩大模型范围,还通过将新恢复的特征纳入其状态估计来提高跟踪精度。该公式朝着自动模型构建迈出了一步,因为它允许对先验形状表示的可用性以及完全自底向上重建所需的特征数量做出更弱的假设。我们在两个独立的基于图像的跟踪领域展示了所提出的方法,每个领域都涉及复杂的3D物体结构和运动。

相似文献

1
Incremental model-based estimation using geometric constraints.
IEEE Trans Pattern Anal Mach Intell. 2005 May;27(5):727-38. doi: 10.1109/TPAMI.2005.104.
2
A voting-based computational framework for visual motion analysis and interpretation.
IEEE Trans Pattern Anal Mach Intell. 2005 May;27(5):739-52. doi: 10.1109/TPAMI.2005.91.
3
Tracking multiple humans in complex situations.
IEEE Trans Pattern Anal Mach Intell. 2004 Sep;26(9):1208-21. doi: 10.1109/TPAMI.2004.73.
4
Integration of geometric elements, Euclidean relations, and motion curves for parametric shape and motion estimation.
IEEE Trans Pattern Anal Mach Intell. 2005 Dec;27(12):1960-76. doi: 10.1109/TPAMI.2005.245.
5
Model-based hand tracking using a hierarchical Bayesian filter.
IEEE Trans Pattern Anal Mach Intell. 2006 Sep;28(9):1372-84. doi: 10.1109/TPAMI.2006.189.
6
Physical models for moving shadow and object detection in video.
IEEE Trans Pattern Anal Mach Intell. 2004 Aug;26(8):1079-87. doi: 10.1109/TPAMI.2004.51.
7
Depth map calculation for a variable number of moving objects using markov sequential object processes.
IEEE Trans Pattern Anal Mach Intell. 2008 Jul;30(7):1308-12. doi: 10.1109/TPAMI.2008.45.
8
3D model retrieval using probability density-based shape descriptors.
IEEE Trans Pattern Anal Mach Intell. 2009 Jun;31(6):1117-33. doi: 10.1109/TPAMI.2009.25.
9
Analyzing and capturing articulated hand motion in image sequences.
IEEE Trans Pattern Anal Mach Intell. 2005 Dec;27(12):1910-22. doi: 10.1109/TPAMI.2005.233.
10
A 3D shape constraint on video.
IEEE Trans Pattern Anal Mach Intell. 2006 Jun;28(6):1018-23. doi: 10.1109/TPAMI.2006.109.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验