Suppr超能文献

获批抗抑郁药的样本量与效应量关系:支持更好临床试验设计的真实世界例证。

Obtained effect size as a function of sample size in approved antidepressants: a real-world illustration in support of better trial design.

机构信息

INC Research, Austin, Texas 78746, USA.

出版信息

Int Clin Psychopharmacol. 2012 Mar;27(2):100-6. doi: 10.1097/YIC.0b013e32834f504f.

Abstract

The high failure rate of antidepressant trials has spurred exploration of the factors that affect trial sensitivity. In the current analysis, Food and Drug Administration antidepressant drug registration trial data compiled by Turner et al. is extended to include the most recently approved antidepressants. The expanded dataset is examined to further establish the likely population effect size (ES) for monoaminergic antidepressants and to demonstrate the relationship between observed ES and sample size in trials on compounds with proven efficacy. Results indicate that the overall underlying ES for antidepressants is approximately 0.30, and that the variability in observed ES across trials is related to the sample size of the trial. The current data provide a unique real-world illustration of an often underappreciated statistical truism: that small N trials are more likely to mislead than to inform, and that by aligning sample size to the population ES, risks of both erroneously high and low effects are minimized. The results in the current study make this abstract concept concrete and will help drug developers arrive at informed gate decisions with greater confidence and fewer risks, improving the odds of success for future antidepressant trials.

摘要

抗抑郁药试验的高失败率促使人们探索影响试验敏感性的因素。在当前的分析中,Turner 等人编译的食品和药物管理局抗抑郁药注册试验数据扩展到包括最近批准的抗抑郁药。对扩展数据集进行了进一步检查,以进一步确定单胺能抗抑郁药的可能人群效应大小(ES),并证明在具有已证明疗效的化合物的试验中,观察到的 ES 与样本量之间的关系。结果表明,抗抑郁药的总体潜在 ES 约为 0.30,并且试验之间观察到的 ES 的可变性与试验的样本量有关。目前的数据提供了一个独特的现实世界例证,说明了一个经常被低估的统计真理:小 N 试验更有可能产生误导,而不是提供信息,并且通过使样本量与人群 ES 保持一致,可以最大限度地降低错误的高和低效果的风险。当前研究的结果使这个抽象概念具体化,并将帮助药物开发人员更有信心和更少风险地做出明智的门控决策,从而提高未来抗抑郁药试验成功的几率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验