Advanced Biomedical MRI Lab, Center for Optoelectronic Biomedicine, National Taiwan University College of Medicine, No.1, Sec 1, Jen-Ai Road, Taipei 10051, Taiwan.
J Neurosci Methods. 2012 Mar 30;205(1):119-29. doi: 10.1016/j.jneumeth.2011.12.020. Epub 2012 Jan 2.
The laterality index (LI) is often applied in functional magnetic resonance imaging (fMRI) studies to determine functional hemispheric lateralization. A difficulty in using conventional LI methods lies in ensuring a legitimate computing procedure with a clear rationale. Another problem with LI is dealing with outliers and noise. We propose a method called AveLI that follows a simple and unbiased computational principle using all voxel t-values within regions of interest (ROIs). This method first computes subordinate LIs (sub-LIs) using each of the task-related positive voxel t-values in the ROIs as the threshold as follows: sub-LI=(Lt-Rt)/(Lt+Rt), where Lt and Rt are the sums of the t-values at and above the threshold in the left and right ROIs, respectively. The AveLI is the average of those sub-LIs and indicates how consistently lateralized the performance of the subject is across the full range of voxel t-value thresholds. Its intrinsic weighting of higher t-value voxels in a data-driven manner helps to reduce noise effects. The resistance against outliers is demonstrated using a simulation. We applied the AveLI as well as other "non-thresholding" and "thresholding" LI methods to two language tasks using participants with right- and left-hand preferences. The AveLI showed a moderate index value among 10 examined indices. The rank orders of the participants did not vary between indices. AveLI provides an index that is not only comprehensible but also highly resistant to outliers and to noise, and it has a high reproducibility between tasks and the ability to categorize functional lateralization.
侧性指数(Laterality Index,LI)常用于功能磁共振成像(fMRI)研究,以确定功能半球侧化。使用传统 LI 方法的一个难点在于确保计算过程合法,并具有明确的原理。LI 的另一个问题是处理异常值和噪声。我们提出了一种称为 AveLI 的方法,该方法使用感兴趣区域(ROI)内所有体素的 t 值遵循简单且无偏的计算原则。该方法首先使用 ROI 中每个与任务相关的正体素 t 值作为阈值计算从属 LI(sub-LI),如下所示:sub-LI=(Lt-Rt)/(Lt+Rt),其中 Lt 和 Rt 分别是左、右 ROI 中低于和高于阈值的 t 值的总和。AveLI 是这些 sub-LI 的平均值,表示受试者在全范围体素 t 值阈值下的表现有多一致地偏向一侧。它以数据驱动的方式对较高 t 值体素进行内在加权,有助于减少噪声效应。通过模拟证明了对异常值的抵抗力。我们使用具有右撇子和左撇子偏好的参与者的两种语言任务应用了 AveLI 以及其他“非阈值”和“阈值”LI 方法。AveLI 在 10 个检查指数中表现出中等指数值。参与者的等级顺序在指数之间没有变化。AveLI 提供了一个不仅易于理解而且对异常值和噪声具有高度抵抗力的指数,并且在任务之间具有高可重复性和功能侧化分类能力。