Suppr超能文献

利用电子健康记录数据库检测药物不良反应信号:实验室极端异常比值(CLEAR)算法的比较。

Detection of adverse drug reaction signals using an electronic health records database: Comparison of the Laboratory Extreme Abnormality Ratio (CLEAR) algorithm.

机构信息

Department of Biomedical Informatics, Ajou University School of Medicine, Suwon, Korea.

出版信息

Clin Pharmacol Ther. 2012 Mar;91(3):467-74. doi: 10.1038/clpt.2011.248. Epub 2012 Jan 11.

Abstract

Electronic health records (EHRs) are expected to be a good source of data for pharmacovigilance. However, current quantitative methods are not applicable to EHR data. We propose a novel quantitative postmarketing surveillance algorithm, the Comparison of Laboratory Extreme Abnormality Ratio (CLEAR), for detecting adverse drug reaction (ADR) signals from EHR data. The methodology involves calculating the odds ratio of laboratory abnormalities between a specific drug-exposed group and a matched unexposed group. Using a 10-year EHR data set, we applied the algorithm to test 470 randomly selected drug-event pairs. It was found possible to analyze a single drug-event pair in just 109 ± 159 seconds. In total, 120 of the 150 detected signals corresponded with previously reported ADRs (positive predictive value (PPV) = 0.837 ± 0.113, negative predictive value (NPV) = 0.659 ± 0.180). By quickly and efficiently identifying ADR signals from EHR data, the CLEAR algorithm can significantly contribute to the utilization of EHR data for pharmacovigilance.

摘要

电子健康记录 (EHR) 有望成为药物警戒的良好数据来源。然而,目前的定量方法不适用于 EHR 数据。我们提出了一种新颖的定量上市后监测算法,即实验室极端异常比值比较 (CLEAR),用于从 EHR 数据中检测药物不良反应 (ADR) 信号。该方法包括计算特定药物暴露组和匹配的未暴露组之间实验室异常的比值比。使用 10 年的 EHR 数据集,我们应用该算法测试了 470 对随机选择的药物事件对。结果发现,分析单个药物事件对只需要 109 ± 159 秒。总共,检测到的 150 个信号中有 120 个与先前报道的 ADR 相对应(阳性预测值 (PPV) = 0.837 ± 0.113,阴性预测值 (NPV) = 0.659 ± 0.180)。通过快速有效地从 EHR 数据中识别 ADR 信号,CLEAR 算法可以为药物警戒中利用 EHR 数据做出重大贡献。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验