Suppr超能文献

用于检测药物不良反应的极端实验室测试比较(CERT)算法的应用与优化:跨国界的可转移性。

Application and optimisation of the Comparison on Extreme Laboratory Tests (CERT) algorithm for detection of adverse drug reactions: Transferability across national boundaries.

作者信息

Tham Mun Yee, Ye Qing, Ang Pei San, Fan Liza Y, Yoon Dukyong, Park Rae Woong, Ling Zheng Jye, Yip James W, Tai Bee Choo, Evans Stephen Jw, Sung Cynthia

机构信息

Vigilance and Compliance Branch, Health Sciences Authority, Singapore.

Genome Institute of Singapore, Agency for Science and Technology, Singapore.

出版信息

Pharmacoepidemiol Drug Saf. 2018 Jan;27(1):87-94. doi: 10.1002/pds.4340. Epub 2017 Nov 6.

Abstract

PURPOSE

The Singapore regulatory agency for health products (Health Sciences Authority), in performing active surveillance of medicines and their potential harms, is open to new methods to achieve this goal. Laboratory tests are a potential source of data for this purpose. We have examined the performance of the Comparison on Extreme Laboratory Tests (CERT) algorithm, developed by Ajou University, Korea, as a potential tool for adverse drug reaction detection based on the electronic medical records of the Singapore health care system.

METHODS

We implemented the original CERT algorithm, comparing extreme laboratory results pre- and post-drug exposure, and 5 variations thereof using 4.5 years of National University Hospital (NUH) electronic medical record data (31 869 588 laboratory tests, 6 699 591 drug dispensings from 272 328 hospitalizations). We investigated 6 drugs from the original CERT paper and an additional 47 drugs. We benchmarked results against a reference standard that we created from UpToDate 2015.

RESULTS

The original CERT algorithm applied to all 53 drugs and 44 laboratory abnormalities yielded a positive predictive value (PPV) and sensitivity of 50.3% and 54.1%, respectively. By raising the minimum number of cases for each drug-laboratory abnormality pair from 2 to 400, the PPV and sensitivity increased to 53.9% and 67.2%, respectively. This post hoc variation, named CERT400, performed particularly well for drug-induced hepatic and renal toxicities.

DISCUSSION

We have demonstrated that the CERT algorithm can be applied across national boundaries. One modification (CERT400) was able to identify adverse drug reaction signals from laboratory data with reasonable PPV and sensitivity, which indicates potential utility as a supplementary pharmacovigilance tool.

摘要

目的

新加坡健康产品监管机构(卫生科学局)在对药品及其潜在危害进行主动监测时,愿意采用新方法来实现这一目标。实验室检测是实现此目的的潜在数据来源。我们研究了韩国庆熙大学开发的极端实验室检测比较(CERT)算法作为一种基于新加坡医疗系统电子病历检测药物不良反应的潜在工具的性能。

方法

我们实施了原始的CERT算法,比较药物暴露前后的极端实验室结果,以及使用4.5年国立大学医院(NUH)电子病历数据(31869588次实验室检测,来自272328次住院的6699591次药物配药)的5种变体。我们研究了原始CERT论文中的6种药物以及另外47种药物。我们将结果与根据《UpToDate 2015》创建的参考标准进行了对比。

结果

将原始CERT算法应用于所有53种药物和44种实验室异常情况时,阳性预测值(PPV)和灵敏度分别为50.3%和54.1%。通过将每种药物-实验室异常对的最小病例数从2提高到400,PPV和灵敏度分别提高到53.9%和67.2%。这种事后变体名为CERT-400,在药物性肝毒性和肾毒性方面表现尤为出色。

讨论

我们已经证明CERT算法可以跨国应用。一种改进方法(CERT-400)能够从实验室数据中识别出具有合理PPV和灵敏度的药物不良反应信号,这表明其作为补充性药物警戒工具的潜在效用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验