Clore G M, Driscoll P C, Wingfield P T, Gronenborn A M
Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892.
Biochemistry. 1990 Aug 14;29(32):7387-401. doi: 10.1021/bi00484a006.
The backbone dynamics of uniformly 15N-labeled interleukin-1 beta are investigated by using two-dimensional inverse detected heteronuclear 15N-1H NMR spectroscopy. 15N T1, T2, and NOE data at a spectrometer frequency of 600 MHz are obtained for 90% of the backbone amide groups. The data provide evidence for motions on three time scales. All the residues exhibit very fast motions on a time scale of approximately less than 20-50 ps that can be characterized by a single-order parameter with an average value of 0.82 +/- 0.05. For a model comprising free diffusion within a cone, these residue-specific order parameters translate to an average cone semiangle of 20.7 +/- 3.3 degrees. Thirty-two residues also display motions on a time scale of 0.5-4 ns, slightly less than the overall rotational correlation time of the protein (8.3 ns). These additional motions must be invoked to account for the discrepancy between experiment and the simplest theoretical formulation in which the internal motions are described by only two parameters, a generalized order parameter and an effective correlation time [Lipari, G., & Szabo, A. (1982a) J. Am. Chem. Soc. 104, 4546-4559]. In particular, while the simple formulation can account for the 15N T1 and T2 data, it fails to account for the 15N-1H NOE data and yields calculated values for the NOEs that are either too small or negative, whereas the observed NOEs are positive. With the introduction of two internal motions that are faster than the rotational correlation time and differ in time scales by at least 1-2 orders of magnitude [Clore, G. M., Szabo, A., Bax, A., Kay, L. E., Driscoll, P. C., & Gronenborn, A. M. (1990) J. Am. Chem. Soc. 112, 4989-4991], all the relaxation data for these 32 residues can be fitted by two order parameters and an effective correlation time for the slower of the two internal motions. A simple model for these two motions is one in which the very fast motion involves axially symmetric diffusion within a cone, while the slower motion comprises jumps between two different orientations of the NH vector. For such a model the jump angle (excluding the C-terminal residue) ranges from 15 degrees to 69 degrees with a mean value of 28.6 +/- 14.0 degrees. Another 42 residues are characterized by some sort of motion on the 30-ns-10-ms time scale, which results in 15N line broadening due to chemical exchange between different conformational substates with distinct 15N chemical shifts.(ABSTRACT TRUNCATED AT 400 WORDS)
通过使用二维反向检测异核(^{15}N - ^{1}H)核磁共振光谱,研究了均匀(^{15}N)标记的白细胞介素 - 1β的主链动力学。在600 MHz的光谱仪频率下,获得了90%主链酰胺基团的(^{15}N) (T_1)、(T_2)和NOE数据。这些数据为三个时间尺度上的运动提供了证据。所有残基在大约小于20 - 50皮秒的时间尺度上表现出非常快速的运动,其特征可以用单个序参数来描述,平均值为(0.82 ± 0.05)。对于一个包含在圆锥体内自由扩散的模型,这些残基特异性序参数转化为平均圆锥半角为(20.7 ± 3.3)度。32个残基还在0.5 - 4纳秒的时间尺度上表现出运动,略小于蛋白质的整体旋转相关时间(8.3纳秒)。必须引入这些额外的运动来解释实验与最简单理论公式之间的差异,在最简单的理论公式中,内部运动仅由两个参数描述,即广义序参数和有效相关时间[Lipari, G., & Szabo, A. (1982a) J. Am. Chem. Soc. 104, 4546 - 4559]。特别是,虽然简单公式可以解释(^{15}N) (T_1)和(T_2)数据,但它无法解释(^{15}N - ^{1}H) NOE数据,并且得出的NOE计算值要么太小要么为负,而观察到的NOE是正的。通过引入两个比旋转相关时间更快且时间尺度相差至少1 - 2个数量级的内部运动[Clore, G. M., Szabo, A., Bax, A., Kay, L. E., Driscoll, P. C., & Gronenborn, A. M. (1990) J. Am. Chem. Soc. 112, 4989 - 4991],这32个残基的所有弛豫数据都可以用两个序参数和两个内部运动中较慢运动的有效相关时间来拟合。这两个运动的一个简单模型是,非常快速的运动涉及在圆锥体内的轴对称扩散,而较慢的运动包括NH向量在两个不同取向之间的跳跃。对于这样一个模型,跳跃角度(不包括C末端残基)范围从15度到69度,平均值为(28.6 ± 14.0)度。另外42个残基的特征是在30纳秒 - 10毫秒时间尺度上有某种运动,这导致由于具有不同(^{15}N)化学位移的不同构象亚态之间的化学交换而使(^{15}N)谱线变宽。(摘要截断于400字)