Suppr超能文献

膜静电学

Membrane electrostatics.

作者信息

Cevc G

机构信息

Medizinische Biophysik, Technischen Universität München, F.R.G.

出版信息

Biochim Biophys Acta. 1990 Oct 8;1031(3):311-82. doi: 10.1016/0304-4157(90)90015-5.

Abstract

In conclusion, charged membrane together with their adjacent electrolyte solution form a thermodynamic and physico-chemical entity. Their surfaces represent an exceptionally complicated interfacial system owing to intrinsic membrane complexity, as well as to the polarity and often large thickness of the interfacial region. Despite this, charged membranes can be described reasonably accurately within the framework of available theoretical models, provided that the latter are chosen on the basis of suitable criteria, which are briefly discussed in Section A. Interion correlations are likely to be important for the regular and/or rigid, thin membrane-solution interfaces. Lateral distribution of the structural membrane charge is seldom and charge distribution perpendicular to the membranes is nearly always electrostatically important. So is the interfacial hydration, which to a large extent determines the properties of the innermost part of the interfacial region, with a thickness of 2-3 nm. Fine structure of the ion double-layer and the interfacial smearing of the structural membrane charge decrease whilst the surface hydration increases the calculated value of the electrostatic membrane potential relative to the result of common Gouy-Chapman approximation. In some cases these effects partly cancel-out; simple electrostatic models are then fairly accurate. Notwithstanding this, it is at present difficult to draw detailed molecular conclusions from a large part of the published data, mainly owing to the lack of really stringent controls or calibrations. Ion binding to the membrane surface is a complicated process which involves charge-charge as well as charge-solvent interactions. Its efficiency normally increases with the ion valency and with the membrane charge density, but it is also strongly dependent on the physico-chemical and thermodynamic state of the membrane. Except in the case of the stereospecific ion binding to a membrane, the relatively easily accessible phosphate and carboxylic groups on lipids and integral membrane proteins are the main cation binding sites. Anions bind preferentially to the amine groups, even on zwitterionic molecules. Membrane structure is apt to change upon ion binding but not always in the same direction: membranes with bound ions can either expand or become more condensed, depending on the final hydrophilicity (polarity) of the membrane surface. The more polar membranes, as a rule, are less tightly packed and more fluid. Diffusive ion flow across a membrane depends on the transmembrane potential and concentration gradients, but also on the coulombic and hydration potentials at the membrane surface.(ABSTRACT TRUNCATED AT 400 WORDS)

摘要

总之,带电膜与其相邻的电解质溶液形成一个热力学和物理化学实体。由于膜本身的复杂性以及界面区域的极性和通常较大的厚度,它们的表面代表了一个异常复杂的界面系统。尽管如此,只要根据合适的标准选择可用的理论模型(在A节中简要讨论了这些标准),带电膜就可以在这些模型的框架内得到相当准确的描述。离子间的相关性对于规则和/或刚性的薄膜 - 溶液界面可能很重要。结构膜电荷的横向分布很少起作用,而垂直于膜的电荷分布几乎总是具有重要的静电作用。界面水合作用也是如此,它在很大程度上决定了界面区域最内层的性质,该区域厚度为2 - 3纳米。离子双层的精细结构和结构膜电荷的界面涂抹会减小,而表面水合作用会使相对于普通古依 - 查普曼近似结果的静电膜电位计算值增加。在某些情况下,这些效应会部分抵消;此时简单的静电模型相当准确。尽管如此,目前很难从大部分已发表的数据中得出详细的分子结论,主要是因为缺乏真正严格的控制或校准。离子与膜表面的结合是一个复杂的过程,涉及电荷 - 电荷以及电荷 - 溶剂相互作用。其效率通常随离子价态和膜电荷密度的增加而提高,但它也强烈依赖于膜的物理化学和热力学状态。除了立体特异性离子与膜的结合情况外,脂质和整合膜蛋白上相对容易接近的磷酸基团和羧基是主要的阳离子结合位点。阴离子优先与胺基团结合,即使是在两性离子分子上。离子结合后膜结构往往会发生变化,但并不总是朝着相同的方向:结合离子的膜可能会膨胀或变得更加凝聚,这取决于膜表面最终的亲水性(极性)。通常,极性越强的膜堆积越不紧密,流动性越大。跨膜的扩散离子流取决于跨膜电位和浓度梯度,但也取决于膜表面的库仑电位和水合电位。(摘要截断于400字)

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验