Suppr超能文献

镓标记的2-[4,7-二(羧甲基)-1,4,7-三氮杂环壬烷-1-基]-5-[(4-羟基-4,4-二膦酰丁基)氨基]-5-氧代戊酸(NOTA-双膦酸盐(BP))

Ga-Labeled 2-[4,7-di(carboxymethyl)-1,4,7-triazonan-1-yl]-5-[(4-hydroxy-4,4-diphosphonobutyl)amino]-5-oxopentanoic acid (NOTA-bisphosphonate (BP))

作者信息

Chopra Arvind

机构信息

National Center for Biotechnology Information, NLM, Bethesda, MD 20894

Abstract

Bisphosphonates (BPs; also known as diphosphonates), such as methylene diphosphonate (MDP) and zoledronic acid, can be labeled with technetium-99m ([Tc]-BPs) for use in bone scintigraphy to detect osteoporosis and other skeletal-related events (SREs), including bone metastases (1). These chemicals are known to promote osteoclast apoptosis and have a strong affinity for hydroxyapatite, a component of the bone matrix. The exact mechanism of action of these bone-seeking compounds is described in detail elsewhere (2-4). Although these labeled compounds have a high sensitivity, selectivity, and accuracy for the detection of SREs, they are known to generate some false positive and false negative results in the clinic (5). [F]-Fluoride is another nuclide that is commonly used for bone imaging with positron emission tomography (PET) and is believed to be superior to [Tc]-BPs for the diagnosis of SREs (6); however, the main limitations of using F are the high cost of production and the requirement of a cyclotron to produce it (5). In an effort to develop an imaging compound that does not have the limitations of tracers currently used to detect SREs with scintigraphy or PET, Suzuki et al. developed a bisphosphonate labeled with Ga, which has been shown to be potentially useful for the PET imaging of the skeletal system (5). The main advantage of using Ga (half-life = 68 min; β = 89%; E+ = 1.9 MeV) for bone imaging over either Tc (half-life = 6 h; γ = 100%; E+ = 140 keV) or F (half-life = ~110 min; β = 97%; E+ = 0.635 MeV) as a radiolabel is that Ga can be produced economically on-site with a Ge/Ga generator (5). Suzuki et al. coupled a BP with 1,4,7-triazacyclononane-1,4-7-triacetic acid (NOTA-BP) and labeled the product with Ga to obtain [Ga]-NOTA-BP (5). The investigators then compared the biodistribution of [Ga]-NOTA-BP with that of [Tc]-methylene diphosphonate ([Tc]-MDP) and [F]fluoride in rats. [Ga]-NOTA-BP was also evaluated for the imaging of osteolytic bone metastasis in mice.

摘要

双膦酸盐(BPs;也称为二膦酸盐),如亚甲基二膦酸盐(MDP)和唑来膦酸,可与锝-99m([Tc]-BPs)标记,用于骨闪烁显像以检测骨质疏松症和其他骨骼相关事件(SREs),包括骨转移(1)。已知这些化学物质可促进破骨细胞凋亡,并且对骨基质的成分羟基磷灰石具有很强的亲和力。这些亲骨化合物的确切作用机制在其他地方有详细描述(2 - 4)。尽管这些标记化合物对SREs的检测具有高灵敏度、选择性和准确性,但已知它们在临床中会产生一些假阳性和假阴性结果(5)。[F]-氟化物是另一种常用于正电子发射断层扫描(PET)骨成像的核素,并且被认为在SREs的诊断方面优于[Tc]-BPs(6);然而,使用F的主要局限性在于生产成本高以及需要回旋加速器来生产它(5)。为了开发一种没有当前用于骨闪烁显像或PET检测SREs的示踪剂所具有的局限性的成像化合物,铃木等人开发了一种用镓标记的双膦酸盐,已证明其对骨骼系统的PET成像具有潜在用途(5)。与锝(半衰期 = 6小时;γ = 100%;E+ = 140 keV)或氟(半衰期 = ~110分钟;β = 97%;E+ = 0.635 MeV)相比,使用镓(半衰期 = 68分钟;β = 89%;E+ = 1.9 MeV)作为放射性标记进行骨成像的主要优点是镓可以使用锗/镓发生器在现场经济地生产(5)。铃木等人将一种双膦酸盐与1,4,7 - 三氮杂环壬烷 - 1,4,7 - 三乙酸(NOTA - BP)偶联,并用镓标记产物以获得[Ga]-NOTA - BP(5)。然后研究人员比较了[Ga]-NOTA - BP与[Tc]-亚甲基二膦酸盐([Tc]-MDP)和[F]-氟化物在大鼠体内的生物分布。还对[Ga]-NOTA - BP进行了小鼠溶骨性骨转移成像评估。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验