Laboratory of Metal Physics and Technology, Department of Materials, ETH Zürich, 8093 Zürich, Switzerland.
J Am Chem Soc. 2012 Feb 1;134(4):1966-9. doi: 10.1021/ja210446w. Epub 2012 Jan 19.
We report the ultrasensitive detection of adenine using deep-UV surface-enhanced resonance Raman scattering on aluminum nanostructures. Well-defined Al nanoparticle arrays fabricated over large areas using extreme-UV interference lithography exhibited sharp and tunable plasmon resonances in the UV and deep-UV wavelength ranges. Theoretical modeling based on the finite-difference time-domain method was used to understand the near-field and far-field optical properties of the nanoparticle arrays. Raman measurements were performed on adenine molecules coated uniformly on the Al nanoparticle arrays at a laser excitation wavelength of 257.2 nm. With this technique, less than 10 amol of label-free adenine molecules could be detected reproducibly in real time. Zeptomole (~30,000 molecules) detection sensitivity was readily achieved proving that deep-UV surface-enhanced resonance Raman scattering is an extremely sensitive tool for the detection of biomolecules.
我们报告了使用深紫外表面增强共振拉曼散射在铝纳米结构上对腺嘌呤的超灵敏检测。使用极紫外干涉光刻在大面积上制造的具有明确定义的 Al 纳米粒子阵列在紫外和深紫外波长范围内表现出尖锐和可调谐的等离子体共振。基于时域有限差分法的理论建模用于理解纳米粒子阵列的近场和远场光学性质。在激光激发波长为 257.2nm 的情况下,对均匀涂覆在 Al 纳米粒子阵列上的腺嘌呤分子进行了拉曼测量。通过该技术,可以实时重复检测到少于 10amol 的无标记腺嘌呤分子。很容易达到兆分摩尔(~30000 个分子)的检测灵敏度,证明深紫外表面增强共振拉曼散射是一种用于检测生物分子的极其灵敏的工具。