Fakultät für Physik, Ludwig-Maximilians-Universität, Schellingstrasse 4, 80799 München, Germany.
Phys Rev Lett. 2011 Dec 16;107(25):255301. doi: 10.1103/PhysRevLett.107.255301. Epub 2011 Dec 12.
We use Raman-assisted tunneling in an optical superlattice to generate large tunable effective magnetic fields for ultracold atoms. When hopping in the lattice, the accumulated phase shift by an atom is equivalent to the Aharonov-Bohm phase of a charged particle exposed to a staggered magnetic field of large magnitude, on the order of 1 flux quantum per plaquette. We study the ground state of this system and observe that the frustration induced by the magnetic field can lead to a degenerate ground state for noninteracting particles. We provide a measurement of the local phase acquired from Raman-induced tunneling, demonstrating time-reversal symmetry breaking of the underlying Hamiltonian. Furthermore, the quantum cyclotron orbit of single atoms in the lattice exposed to the magnetic field is directly revealed.
我们在光学超晶格中利用 Raman 辅助隧穿来产生大的可调谐有效磁场,用于超冷原子。当原子在晶格中跳跃时,其累积的相移等效于处于大强度交错磁场中的带电粒子的 Aharonov-Bohm 相位,该磁场的量级为每个 plaquette 1 磁通量子。我们研究了该系统的基态,并观察到磁场引起的挫折可以导致非相互作用粒子的简并基态。我们提供了从 Raman 诱导隧穿中获得的局部相位的测量结果,证明了基础哈密顿量的时间反转对称性破缺。此外,直接揭示了磁场中晶格中单原子的量子回旋轨道。