Suppr超能文献

Potassium currents recorded in type I carotid body cells from the neonatal rat and their modulation by chemoexcitatory agents.

作者信息

Peers C, O'Donnell J

机构信息

University Laboratory of Physiology, Oxford, U.K.

出版信息

Brain Res. 1990 Jul 9;522(2):259-66. doi: 10.1016/0006-8993(90)91470-2.

Abstract

Whole cell patch clamp recordings were made from type I cells of the neonatal rat carotid body, isolated and maintained in primary culture for up to 48 h. Depolarizing voltage steps applied from a holding potential of -70 mV evoked outward currents positive to approximately -30 mV. Currents were strongly blocked by extracellular tetraethylammonium (25 mM), and were therefore attributed to activation of voltage-dependent K+ channels. Currents were also suppressed by 4-aminopyridine, removal of extracellular Ca2+, and replacement of extracellular Ca2+ with Ba2+. These results suggest there are Ca2(+)-dependent and Ca2(+)-independent components of the K+ currents. No evidence was found to suggest that ATP-sensitive K+ channels were present. The effects of 3 chemoexcitatory agents (NaCN, almitrine and reduced extracellular pH) on K+ currents in isolated type I cells were investigated. All three agents suppressed K+ currents to similar degrees. The effects of lowered pH and NaCN were reversible, and NaCN-induced reductions occurred regardless of the presence of intracellular ATP. The effect of almitrine was irreversible for up to 30 min of recording. It is concluded that the reduction of K+ currents by chemoexcitants may play a role in the mechanism of chemotransduction in the carotid body.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验