Suppr超能文献

相似文献

1
2
Heteromeric TASK-1/TASK-3 is the major oxygen-sensitive background K+ channel in rat carotid body glomus cells.
J Physiol. 2009 Jun 15;587(Pt 12):2963-75. doi: 10.1113/jphysiol.2009.171181. Epub 2009 Apr 29.
3
The effect of mitochondrial inhibitors on membrane currents in isolated neonatal rat carotid body type I cells.
J Physiol. 2004 Apr 1;556(Pt 1):175-91. doi: 10.1113/jphysiol.2003.058131. Epub 2004 Jan 14.
4
A role for TASK-1 (KCNK3) channels in the chemosensory control of breathing.
J Neurosci. 2008 Aug 27;28(35):8844-50. doi: 10.1523/JNEUROSCI.1810-08.2008.
5
Biophysical properties and metabolic regulation of a TASK-like potassium channel in rat carotid body type 1 cells.
Am J Physiol Lung Cell Mol Physiol. 2004 Jan;286(1):L221-30. doi: 10.1152/ajplung.00010.2003. Epub 2003 Sep 22.
7
The role of TASK-like K+ channels in oxygen sensing in the carotid body.
Novartis Found Symp. 2006;272:73-85; discussion 85-94, 131-40.
9
TASK-1 (K3) and TASK-3 (K9) in Rabbit Carotid Body Glomus Cells.
Adv Exp Med Biol. 2018;1071:35-41. doi: 10.1007/978-3-319-91137-3_4.

引用本文的文献

2
Navigating Central Oxytocin Transport: Known Realms and Uncharted Territories.
Neuroscientist. 2025 Jun;31(3):234-261. doi: 10.1177/10738584241268754. Epub 2024 Aug 7.
4
TASK inhibition by mild acidosis increases Ca oscillations to mediate pH sensing in rat carotid body chemoreceptor cells.
Am J Physiol Lung Cell Mol Physiol. 2023 Mar 1;324(3):L259-L270. doi: 10.1152/ajplung.00099.2022. Epub 2023 Jan 24.
5
Expression and function of mitochondrial inhibitor factor-1 and TASK channels in adrenal cells.
Biochem Biophys Res Commun. 2023 Feb 19;645:17-23. doi: 10.1016/j.bbrc.2023.01.025. Epub 2023 Jan 11.
6
Neurovascular coupling: motive unknown.
Trends Neurosci. 2022 Nov;45(11):809-819. doi: 10.1016/j.tins.2022.08.004. Epub 2022 Aug 19.
7
Could respiration-driven blood oxygen changes modulate neural activity?
Pflugers Arch. 2023 Jan;475(1):37-48. doi: 10.1007/s00424-022-02721-8. Epub 2022 Jun 28.
8
Are Multiple Mitochondrial Related Signalling Pathways Involved in Carotid Body Oxygen Sensing?
Front Physiol. 2022 May 31;13:908617. doi: 10.3389/fphys.2022.908617. eCollection 2022.
9
Acute Oxygen-Sensing Mitochondria-Generated Temperature Transients in Rat Carotid Body Type I Cells.
Front Physiol. 2022 Apr 13;13:874039. doi: 10.3389/fphys.2022.874039. eCollection 2022.
10
Lack of influence of dexmedetomidine on rat glomus cell response to hypoxia, and on mouse acute hypoxic ventilatory response.
J Anaesthesiol Clin Pharmacol. 2021 Oct-Dec;37(4):509-516. doi: 10.4103/joacp.JOACP_309_16. Epub 2022 Jan 6.

本文引用的文献

1
Oxygen sensitivity of mitochondrial function in rat arterial chemoreceptor cells.
J Physiol. 2013 Jul 15;591(14):3549-63. doi: 10.1113/jphysiol.2013.257741. Epub 2013 May 13.
4
Crystal structure of the human K2P TRAAK, a lipid- and mechano-sensitive K+ ion channel.
Science. 2012 Jan 27;335(6067):436-41. doi: 10.1126/science.1213808.
5
Crystal structure of the human two-pore domain potassium channel K2P1.
Science. 2012 Jan 27;335(6067):432-6. doi: 10.1126/science.1213274.
6
Characterization of an ATP-sensitive K(+) channel in rat carotid body glomus cells.
Respir Physiol Neurobiol. 2011 Aug 15;177(3):247-55. doi: 10.1016/j.resp.2011.04.015. Epub 2011 Apr 22.
7
Carotid body chemosensory responses in mice deficient of TASK channels.
J Gen Physiol. 2010 Apr;135(4):379-92. doi: 10.1085/jgp.200910302.
8
Modulation of O(2) sensitive K (+) channels by AMP-activated protein kinase.
Adv Exp Med Biol. 2009;648:57-63. doi: 10.1007/978-90-481-2259-2_6.
9
Heteromeric TASK-1/TASK-3 is the major oxygen-sensitive background K+ channel in rat carotid body glomus cells.
J Physiol. 2009 Jun 15;587(Pt 12):2963-75. doi: 10.1113/jphysiol.2009.171181. Epub 2009 Apr 29.
10
A role for TASK-1 (KCNK3) channels in the chemosensory control of breathing.
J Neurosci. 2008 Aug 27;28(35):8844-50. doi: 10.1523/JNEUROSCI.1810-08.2008.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验