Suppr超能文献

通过反溶剂沉淀-超声法制备卡维地洛纳米混悬剂以提高溶出速率和口服生物利用度。

Fabrication of carvedilol nanosuspensions through the anti-solvent precipitation-ultrasonication method for the improvement of dissolution rate and oral bioavailability.

机构信息

School of Pharmacy, Shenyang Pharmaceutical University, People's Republic of China.

出版信息

AAPS PharmSciTech. 2012 Mar;13(1):295-304. doi: 10.1208/s12249-011-9750-7. Epub 2012 Jan 13.

Abstract

The present study aims to prepare carvedilol (CAR) nanosuspensions using the anti-solvent precipitation-ultrasonication technique to improve its dissolution rate and oral bioavailability. Alpha-tocopherol succinate (VES) was first used as a co-stabilizer to enhance the stability of the nanosuspensions. The effects of the process parameters on particle size of the nanosuspensions were investigated. The optimal values of the precipitation temperature, power inputs, and the time length of ultrasonication were selected as 10°C, 400 W, and 15 min, respectively. Response surface methodology based on central composite design was utilized to evaluate the formulation factors that affect the size of nanosuspensions, i.e., the concentration of CAR and VES in the organic solution, and the level of sodium dodecyl sulfate in the anti-solvent phase, respectively. The optimized formulation showed a mean size of 212 ± 12 nm and a zeta potential of -42 ± 3 mV. Scanning electron microscopy revealed that the nanosuspensions were flaky-shaped. Powder X-ray diffraction and differential scanning calorimetry analysis confirmed that the nanoparticles were in the amorphous state. Fourier transform infrared analysis demonstrated that the reaction between CAR and VES is probably due to hydrogen bonding. The nanosuspension was physically stable at 25°C for 1 week, which allows it to be further processing such as drying. The dissolution rate of the nanosuspensions was markedly enhanced by reducing the size. The in vivo test demonstrated that the C(max) and AUC(0-36) values of nanosuspensions were approximately 3.3- and 2.9-fold greater than that of the commercial tablets, respectively.

摘要

本研究旨在使用抗溶剂沉淀-超声技术制备卡维地洛(CAR)纳米混悬剂,以提高其溶解速率和口服生物利用度。首先使用生育酚琥珀酸酯(VES)作为共稳定剂来增强纳米混悬剂的稳定性。考察了工艺参数对纳米混悬剂粒径的影响。选择沉淀温度、功率输入和超声时间的最佳值分别为 10°C、400 W 和 15 min。基于中心复合设计的响应面法用于评估影响纳米混悬剂粒径的配方因素,即有机溶液中 CAR 和 VES 的浓度以及抗溶剂相中十二烷基硫酸钠的水平。优化的配方显示平均粒径为 212 ± 12nm,zeta 电位为-42 ± 3mV。扫描电子显微镜显示纳米混悬剂呈片状。粉末 X 射线衍射和差示扫描量热分析证实纳米颗粒处于无定形状态。傅里叶变换红外分析表明,CAR 和 VES 之间的反应可能是由于氢键。纳米混悬剂在 25°C 下稳定 1 周,这允许进一步加工,如干燥。通过减小粒径,显著提高了纳米混悬剂的溶解速率。体内试验表明,纳米混悬剂的 C(max)和 AUC(0-36)值分别约为市售片剂的 3.3-和 2.9 倍。

相似文献

5
Effect of particle size on oral absorption of carvedilol nanosuspensions: in vitro and in vivo evaluation.
Int J Nanomedicine. 2015 Oct 13;10:6425-34. doi: 10.2147/IJN.S87143. eCollection 2015.
6
Preparation of azithromycin nanosuspensions by reactive precipitation method.
Drug Dev Ind Pharm. 2012 Jul;38(7):848-54. doi: 10.3109/03639045.2011.630394. Epub 2011 Nov 17.
8
Nanosuspensions as delivery system for gambogenic acid: characterization and in vitro/in vivo evaluation.
Drug Deliv. 2016 Oct;23(8):2772-2779. doi: 10.3109/10717544.2015.1077294. Epub 2015 Aug 18.
9
Fabrication of novel GMO/Eudragit E100 nanostructures for enhancing oral bioavailability of carvedilol.
Drug Dev Ind Pharm. 2016 Aug;42(8):1300-7. doi: 10.3109/03639045.2015.1128440. Epub 2016 Jan 6.

引用本文的文献

5
Nanocrytals-Mediated Oral Drug Delivery: Enhanced Bioavailability of Amiodarone.
Pharmaceutics. 2022 Jun 18;14(6):1300. doi: 10.3390/pharmaceutics14061300.
6
Drug Nanocrystals: Focus on Brain Delivery from Therapeutic to Diagnostic Applications.
Pharmaceutics. 2022 Mar 23;14(4):691. doi: 10.3390/pharmaceutics14040691.
8
Development and Evaluation of Tannic Acid-Coated Nanosuspension for Enhancing Oral Bioavailability of Curcumin.
Pharmaceutics. 2021 Sep 13;13(9):1460. doi: 10.3390/pharmaceutics13091460.
9
Nanoparticles of Lovastatin: Design, Optimization and in vivo Evaluation.
Int J Nanomedicine. 2020 Jun 17;15:4225-4236. doi: 10.2147/IJN.S241120. eCollection 2020.
10
Efficient and Simultaneous Chitosan-Mediated Removal of 11 Mycotoxins from Palm Kernel Cake.
Toxins (Basel). 2020 Feb 12;12(2):115. doi: 10.3390/toxins12020115.

本文引用的文献

2
Carvedilol dissolution improvement by preparation of solid dispersions with porous silica.
Int J Pharm. 2011 Mar 15;406(1-2):41-8. doi: 10.1016/j.ijpharm.2010.12.035. Epub 2011 Jan 8.
3
Enhanced dissolution of megestrol acetate microcrystals prepared by antisolvent precipitation process using hydrophilic additives.
Int J Pharm. 2010 Aug 30;396(1-2):91-8. doi: 10.1016/j.ijpharm.2010.06.016. Epub 2010 Jun 15.
5
Fabrication of drug nanoparticles by evaporative precipitation of nanosuspension.
Int J Pharm. 2010 Jan 4;383(1-2):285-92. doi: 10.1016/j.ijpharm.2009.09.030. Epub 2009 Sep 23.
6
Preparation and characterization of spironolactone nanoparticles by antisolvent precipitation.
Int J Pharm. 2009 Jun 22;375(1-2):84-8. doi: 10.1016/j.ijpharm.2009.03.013. Epub 2009 Mar 24.
7
Micronization of atorvastatin calcium by antisolvent precipitation process.
Int J Pharm. 2009 Jun 5;374(1-2):106-13. doi: 10.1016/j.ijpharm.2009.02.015. Epub 2009 Mar 4.
8
Top-down production of drug nanocrystals: nanosuspension stabilization, miniaturization and transformation into solid products.
Int J Pharm. 2008 Nov 19;364(1):64-75. doi: 10.1016/j.ijpharm.2008.07.023. Epub 2008 Jul 31.
9
A novel bottom-up process to produce drug nanocrystals: controlled crystallization during freeze-drying.
J Control Release. 2008 Jun 4;128(2):179-83. doi: 10.1016/j.jconrel.2008.03.002. Epub 2008 Mar 7.
10
Investigations of a novel self-emulsifying osmotic pump tablet containing carvedilol.
Drug Dev Ind Pharm. 2007 Sep;33(9):990-8. doi: 10.1080/03639040601150328.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验