Sabancı University, Materials Science and Engineering, Advanced Composites and Polymer Processing Laboratory, 34956 Tuzla, Istanbul, Turkey.
ACS Appl Mater Interfaces. 2012 Feb;4(2):777-84. doi: 10.1021/am2014162. Epub 2012 Feb 1.
Strengthened nanofiber-reinforced epoxy matrix composites are demonstrated by engineering composite electrospun fibers of multi-walled carbon nanotubes (MWCNTs) and reactive P(St-co-GMA). MWCNTs are incorporated into surface-modified, reactive P(St-co-GMA) nanofibers by electrospinning; functionalization of these MWCNT/P(St-co-GMA) composite nanofibers with epoxide moieties facilitates bonding at the interface of the cross-linked fibers and the epoxy matrix, effectively reinforcing and toughening the epoxy resin. Rheological properties are determined and thermodynamic stabilization is demonstrated for MWCNTs in the P(St-co-GMA)-DMF polymer solution. Homogeneity and uniformity of the fiber formation within the electrospun mats are achieved at polymer concentration of 30 wt %. Results show that the MWCNT fraction decreases the polymer solution viscosity, yielding a narrower fiber diameter. The fiber diameter drops from an average of 630 nm to 460 nm, as the MWCNTs wt fraction (1, 1.5, and 2%) is increased. The electrospun nanofibers of the MWCNTs/P(St-co-GMA) composite are also embedded into an epoxy resin to investigate their reinforcing abilities. A significant increase in the mechanical response is observed, up to >20% in flexural modulus, when compared to neat epoxy, despite a very low composite fiber weight fraction (at about 0.2% by a single-layer fibrous mat). The increase is attributed to the combined effect of the two factors the inherent strength of the well-dispersed MWCNTs and the surface chemistry of the electrospun fibers that have been modified with epoxide to enable cross-linking between the polymer matrix and the nanofibers.
增强型纳米纤维增强环氧树脂基复合材料通过工程复合电纺纤维多壁碳纳米管(MWCNTs)和反应性 P(St-co-GMA)来实现。MWCNTs 通过静电纺丝掺入表面改性的反应性 P(St-co-GMA)纳米纤维中;这些 MWCNT/P(St-co-GMA)复合纳米纤维的环氧化物官能化有助于交联纤维和环氧树脂界面的键合,有效地增强和增韧环氧树脂。确定了流变性能,并证明了 MWCNTs 在 P(St-co-GMA)-DMF 聚合物溶液中的热力学稳定性。在聚合物浓度为 30wt%时,实现了静电纺丝毡中纤维形成的均匀性和均匀性。结果表明,MWCNT 分数降低了聚合物溶液的粘度,从而使纤维直径变窄。当 MWCNTs wt 分数(1、1.5 和 2%)增加时,纤维直径从平均 630nm 下降到 460nm。MWCNTs/P(St-co-GMA)复合材料的电纺纳米纤维也嵌入到环氧树脂中,以研究其增强能力。与纯环氧树脂相比,观察到机械响应显著增加,弯曲模量增加了>20%,尽管复合材料纤维的重量分数非常低(单层纤维毡中约为 0.2%)。这种增加归因于两个因素的综合影响:分散良好的 MWCNTs 的固有强度和电纺纤维的表面化学,这些纤维已用环氧化物改性,以实现聚合物基质和纳米纤维之间的交联。