School of Chemistry, The University of Melbourne, Victoria 3010, Australia.
Phys Chem Chem Phys. 2012 Feb 21;14(7):2417-26. doi: 10.1039/c2cp22970f. Epub 2012 Jan 16.
Aromatic radicals form in a variety of reacting gas-phase systems, where their molecular weight growth reactions with unsaturated hydrocarbons are of considerable importance. We have investigated the ion-molecule reaction of the aromatic distonic N-methyl-pyridinium-4-yl (NMP) radical cation with 2-butyne (CH(3)C≡CCH(3)) using ion trap mass spectrometry. Comparison is made to high-level ab initio energy surfaces for the reaction of NMP and for the neutral phenyl radical system. The NMP radical cation reacts rapidly with 2-butyne at ambient temperature, due to the apparent absence of any barrier. The activated vinyl radical adduct predominantly dissociates via loss of a H atom, with lesser amounts of CH(3) loss. High-resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry allows us to identify small quantities of the collisionally deactivated reaction adduct. Statistical reaction rate theory calculations (master equation/RRKM theory) on the NMP+2-butyne system support our experimental findings, and indicate a mechanism that predominantly involves an allylic resonance-stabilized radical formed via H atom shuttling between the aromatic ring and the C(4) side-chain, followed by cyclization and/or low-energy H atom β-scission reactions. A similar mechanism is demonstrated for the neutral phenyl radical (Ph˙)+2-butyne reaction, forming products that include 3-methylindene. The collisionally deactivated reaction adduct is predicted to be quenched in the form of a resonance-stabilized methylphenylallyl radical. Experiments using a 2,5-dichloro substituted methyl-pyridiniumyl radical cation revealed that in this case CH(3) loss from the 2-butyne adduct is favoured over H atom loss, verifying the key role of ortho H atoms, and the shuttling mechanism, in the reactions of aromatic radicals with alkynes. As well as being useful phenyl radical analogues, pyridiniumyl radical cations may form in the ionosphere of Titan, where they could undergo rapid molecular weight growth reactions to yield polycyclic aromatic nitrogen hydrocarbons (PANHs).
芳香族自由基在各种气相反应体系中形成,其与不饱和烃的分子量增长反应具有相当重要的意义。我们使用离子阱质谱法研究了芳香族离域 N-甲基-吡啶鎓-4-基(NMP)自由基阳离子与 2-丁炔(CH(3)C≡CCH(3))的离子-分子反应。并将其与 NMP 和中性苯基自由基体系的高精度从头算能面进行了比较。NMP 自由基阳离子在环境温度下与 2-丁炔快速反应,由于显然不存在任何势垒。活性乙烯基自由基加合物主要通过失去 H 原子而分解,少量 CH(3) 也会失去。高分辨率傅里叶变换离子回旋共振(FT-ICR)质谱法使我们能够识别少量经碰撞失活的反应加合物。对 NMP+2-丁炔体系的统计反应速率理论计算(主方程/RRKM 理论)支持了我们的实验发现,并表明了一种主要涉及通过 H 原子在芳环和 C(4)侧链之间穿梭形成的烯丙基共振稳定自由基的机制,随后是环化和/或低能 H 原子β-断裂反应。对于中性苯基自由基(Ph˙)+2-丁炔反应,也证明了类似的机制,生成的产物包括 3-甲基茚。预测经碰撞失活的反应加合物将以共振稳定的甲基苯丙烯基自由基的形式被猝灭。使用 2,5-二氯取代的甲基吡啶鎓自由基阳离子的实验表明,在这种情况下,2-丁炔加合物中 CH(3) 的损失优先于 H 原子的损失,这验证了邻位 H 原子的关键作用和在芳香族自由基与炔烃的反应中的穿梭机制。除了作为有用的苯基自由基类似物外,吡啶鎓自由基阳离子可能在泰坦的电离层中形成,在那里它们可能会发生快速的分子量增长反应,生成多环芳香族氮碳氢化合物(PANHs)。