Suppr超能文献

白念珠菌固醇 Δ⁵,⁶-去饱和酶基因(ERG3)功能丧失导致唑类耐药不一定降低毒力。

Azole resistance by loss of function of the sterol Δ⁵,⁶-desaturase gene (ERG3) in Candida albicans does not necessarily decrease virulence.

机构信息

Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland.

出版信息

Antimicrob Agents Chemother. 2012 Apr;56(4):1960-8. doi: 10.1128/AAC.05720-11. Epub 2012 Jan 17.

Abstract

The inactivation of ERG3, a gene encoding sterol Δ⁵,⁶-desaturase (essential for ergosterol biosynthesis), is a known mechanism of in vitro resistance to azole antifungal drugs in the human pathogen Candida albicans. ERG3 inactivation typically results in loss of filamentation and attenuated virulence in animal models of disseminated candidiasis. In this work, we identified a C. albicans clinical isolate (VSY2) with high-level resistance to azole drugs in vitro and an absence of ergosterol but normal filamentation. Sequencing of ERG3 in VSY2 revealed a double base deletion leading to a premature stop codon and thus a nonfunctional enzyme. The reversion of the double base deletion in the mutant allele (erg3-1) restored ergosterol biosynthesis and full fluconazole susceptibility in VSY2, confirming that ERG3 inactivation was the mechanism of azole resistance. Additionally, the replacement of both ERG3 alleles by erg3-1 in the wild-type strain SC5314 led to the absence of ergosterol and to fluconazole resistance without affecting filamentation. In a mouse model of disseminated candidiasis, the clinical ERG3 mutant VSY2 produced kidney fungal burdens and mouse survival comparable to those obtained with the wild-type control. Interestingly, while VSY2 was resistant to fluconazole both in vitro and in vivo, the ERG3-derived mutant of SC5314 was resistant only in vitro and was less virulent than the wild type. This suggests that VSY2 compensated for the in vivo fitness defect of ERG3 inactivation by a still unknown mechanism(s). Taken together, our results provide evidence that contrary to previous reports inactivation of ERG3 does not necessarily affect filamentation and virulence.

摘要

ERG3 基因编码甾醇 Δ⁵,⁶-去饱和酶(对于麦角固醇生物合成是必需的)失活是人类病原体白念珠菌对唑类抗真菌药物体外耐药的已知机制。ERG3 失活通常导致丝状形成能力丧失和动物播散性念珠菌病模型中的毒力减弱。在这项工作中,我们鉴定了一株白念珠菌临床分离株(VSY2),其对唑类药物具有体外高度耐药性,且麦角固醇缺乏但丝状形成正常。VSY2 中 ERG3 的测序显示双碱基缺失导致提前终止密码子,从而导致无功能酶。在突变等位基因(erg3-1)中回复双碱基缺失恢复了 VSY2 中的麦角固醇生物合成和完全氟康唑敏感性,证实 ERG3 失活是唑类耐药的机制。此外,野生型菌株 SC5314 中两个 ERG3 等位基因被 erg3-1 取代导致麦角固醇缺失和氟康唑耐药,而不影响丝状形成。在播散性念珠菌病的小鼠模型中,临床 ERG3 突变体 VSY2 产生的肾脏真菌负荷和小鼠存活率与野生型对照相当。有趣的是,虽然 VSY2 在体外和体内均对氟康唑耐药,但 SC5314 的 ERG3 衍生突变体仅在体外耐药,且毒力低于野生型。这表明 VSY2 通过未知机制(或多种机制)补偿了 ERG3 失活的体内适应性缺陷。总之,我们的结果提供了证据,表明与之前的报道相反,ERG3 的失活不一定会影响丝状形成和毒力。

相似文献

1
Azole resistance by loss of function of the sterol Δ⁵,⁶-desaturase gene (ERG3) in Candida albicans does not necessarily decrease virulence.
Antimicrob Agents Chemother. 2012 Apr;56(4):1960-8. doi: 10.1128/AAC.05720-11. Epub 2012 Jan 17.
3
Fluconazole treatment is effective against a Candida albicans erg3/erg3 mutant in vivo despite in vitro resistance.
Antimicrob Agents Chemother. 2006 Feb;50(2):580-6. doi: 10.1128/AAC.50.2.580-586.2006.
4
Inactivation of sterol Delta5,6-desaturase attenuates virulence in Candida albicans.
Antimicrob Agents Chemother. 2005 Sep;49(9):3646-51. doi: 10.1128/AAC.49.9.3646-3651.2005.
7
Loss of C-5 Sterol Desaturase Activity in : Azole Resistance or Merely Trailing Growth?
Antimicrob Agents Chemother. 2018 Dec 21;63(1). doi: 10.1128/AAC.01337-18. Print 2019 Jan.
8
Molecular mechanisms of drug resistance in clinical Candida species isolated from Tunisian hospitals.
Antimicrob Agents Chemother. 2013 Jul;57(7):3182-93. doi: 10.1128/AAC.00555-13. Epub 2013 Apr 29.
9
Candida albicans mutations in the ergosterol biosynthetic pathway and resistance to several antifungal agents.
Antimicrob Agents Chemother. 2003 Aug;47(8):2404-12. doi: 10.1128/AAC.47.8.2404-2412.2003.
10
Genetic dissection of azole resistance mechanisms in Candida albicans and their validation in a mouse model of disseminated infection.
Antimicrob Agents Chemother. 2010 Apr;54(4):1476-83. doi: 10.1128/AAC.01645-09. Epub 2010 Jan 19.

引用本文的文献

1
The Role of Drug Resistance in Candida Inflammation and Fitness.
Microorganisms. 2025 Jul 30;13(8):1777. doi: 10.3390/microorganisms13081777.
2
Heterogeneity of bloodstream isolates in an academic medical center and affiliated hospitals.
Microbiol Spectr. 2025 Aug 5;13(8):e0046425. doi: 10.1128/spectrum.00464-25. Epub 2025 Jun 23.
4
Heterogeneity of bloodstream isolates in an academic medical center and affiliated hospitals.
bioRxiv. 2025 Feb 6:2025.02.05.636768. doi: 10.1101/2025.02.05.636768.
5
Erg251 has complex and pleiotropic effects on sterol composition, azole susceptibility, filamentation, and stress response phenotypes.
PLoS Pathog. 2024 Jul 30;20(7):e1012389. doi: 10.1371/journal.ppat.1012389. eCollection 2024 Jul.
7
Multiple genome analysis of clinical isolates renders new insights into genetic diversity and drug resistance determinants.
Microb Cell. 2022 Oct 13;9(11):174-189. doi: 10.15698/mic2022.11.786. eCollection 2022 Nov 7.
9
Prevalence and Antifungal Susceptibility of Clinically Relevant Species, Identification of and in Bangladesh.
Trop Med Infect Dis. 2022 Aug 26;7(9):211. doi: 10.3390/tropicalmed7090211.
10
Genomic Diversity across Candida auris Clinical Isolates Shapes Rapid Development of Antifungal Resistance and .
mBio. 2022 Aug 30;13(4):e0084222. doi: 10.1128/mbio.00842-22. Epub 2022 Jul 5.

本文引用的文献

1
Coevolution of morphology and virulence in Candida species.
Eukaryot Cell. 2011 Sep;10(9):1173-82. doi: 10.1128/EC.05085-11. Epub 2011 Jul 15.
2
Identification and characterization of four azole-resistant erg3 mutants of Candida albicans.
Antimicrob Agents Chemother. 2010 Nov;54(11):4527-33. doi: 10.1128/AAC.00348-10. Epub 2010 Aug 23.
5
Functional interactions between sphingolipids and sterols in biological membranes regulating cell physiology.
Mol Biol Cell. 2009 Apr;20(7):2083-95. doi: 10.1091/mbc.e08-11-1126. Epub 2009 Feb 18.
7
DNA microarray analysis of fluconazole resistance in a laboratory Candida albicans strain.
Acta Biochim Biophys Sin (Shanghai). 2008 Dec;40(12):1048-60. doi: 10.1111/j.1745-7270.2008.00483.x.
9
Will resistance in fungi emerge on a scale similar to that seen in bacteria?
Eur J Clin Microbiol Infect Dis. 2008 May;27(5):327-34. doi: 10.1007/s10096-007-0451-9. Epub 2008 Jan 19.
10
EUCAST definitive document EDef 7.1: method for the determination of broth dilution MICs of antifungal agents for fermentative yeasts.
Clin Microbiol Infect. 2008 Apr;14(4):398-405. doi: 10.1111/j.1469-0691.2007.01935.x. Epub 2008 Jan 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验