Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland.
Antimicrob Agents Chemother. 2012 Apr;56(4):1960-8. doi: 10.1128/AAC.05720-11. Epub 2012 Jan 17.
The inactivation of ERG3, a gene encoding sterol Δ⁵,⁶-desaturase (essential for ergosterol biosynthesis), is a known mechanism of in vitro resistance to azole antifungal drugs in the human pathogen Candida albicans. ERG3 inactivation typically results in loss of filamentation and attenuated virulence in animal models of disseminated candidiasis. In this work, we identified a C. albicans clinical isolate (VSY2) with high-level resistance to azole drugs in vitro and an absence of ergosterol but normal filamentation. Sequencing of ERG3 in VSY2 revealed a double base deletion leading to a premature stop codon and thus a nonfunctional enzyme. The reversion of the double base deletion in the mutant allele (erg3-1) restored ergosterol biosynthesis and full fluconazole susceptibility in VSY2, confirming that ERG3 inactivation was the mechanism of azole resistance. Additionally, the replacement of both ERG3 alleles by erg3-1 in the wild-type strain SC5314 led to the absence of ergosterol and to fluconazole resistance without affecting filamentation. In a mouse model of disseminated candidiasis, the clinical ERG3 mutant VSY2 produced kidney fungal burdens and mouse survival comparable to those obtained with the wild-type control. Interestingly, while VSY2 was resistant to fluconazole both in vitro and in vivo, the ERG3-derived mutant of SC5314 was resistant only in vitro and was less virulent than the wild type. This suggests that VSY2 compensated for the in vivo fitness defect of ERG3 inactivation by a still unknown mechanism(s). Taken together, our results provide evidence that contrary to previous reports inactivation of ERG3 does not necessarily affect filamentation and virulence.
ERG3 基因编码甾醇 Δ⁵,⁶-去饱和酶(对于麦角固醇生物合成是必需的)失活是人类病原体白念珠菌对唑类抗真菌药物体外耐药的已知机制。ERG3 失活通常导致丝状形成能力丧失和动物播散性念珠菌病模型中的毒力减弱。在这项工作中,我们鉴定了一株白念珠菌临床分离株(VSY2),其对唑类药物具有体外高度耐药性,且麦角固醇缺乏但丝状形成正常。VSY2 中 ERG3 的测序显示双碱基缺失导致提前终止密码子,从而导致无功能酶。在突变等位基因(erg3-1)中回复双碱基缺失恢复了 VSY2 中的麦角固醇生物合成和完全氟康唑敏感性,证实 ERG3 失活是唑类耐药的机制。此外,野生型菌株 SC5314 中两个 ERG3 等位基因被 erg3-1 取代导致麦角固醇缺失和氟康唑耐药,而不影响丝状形成。在播散性念珠菌病的小鼠模型中,临床 ERG3 突变体 VSY2 产生的肾脏真菌负荷和小鼠存活率与野生型对照相当。有趣的是,虽然 VSY2 在体外和体内均对氟康唑耐药,但 SC5314 的 ERG3 衍生突变体仅在体外耐药,且毒力低于野生型。这表明 VSY2 通过未知机制(或多种机制)补偿了 ERG3 失活的体内适应性缺陷。总之,我们的结果提供了证据,表明与之前的报道相反,ERG3 的失活不一定会影响丝状形成和毒力。