Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA.
J Biol Chem. 2012 Mar 9;287(11):8029-38. doi: 10.1074/jbc.M111.334854. Epub 2012 Jan 17.
Following attachment and internalization, mammalian reoviruses undergo intracellular proteolytic disassembly followed by viral penetration into the cytoplasm. The initiating event in reovirus disassembly is the cathepsin-mediated proteolytic degradation of viral outer capsid protein σ3. A single tyrosine-to-histidine mutation at amino acid 354 (Y354H) of strain type 3 Dearing (T3D) σ3 enhances reovirus disassembly and confers resistance to protease inhibitors such as E64. The σ3 amino acid sequence of strain type 3 Abney (T3A) differs from that of T3D at eight positions including Y354H. However, T3A displays disassembly kinetics and protease sensitivity comparable with T3D. We hypothesize that one or more additional σ3 polymorphisms suppress the Y354H phenotype and restore T3D disassembly characteristics. To test this hypothesis, we engineered a panel of reovirus variants with T3A σ3 polymorphisms introduced individually into T3D-σ3Y354H. We evaluated E64 resistance and in vitro cathepsin L susceptibility of these viruses and found that one containing a glycine-to-glutamate substitution at position 198 (G198E) displayed disassembly kinetics and E64 sensitivity similar to those properties of T3A and T3D. Additionally, viruses containing changes at positions 233 and 347 (S233L and I347T) developed de novo compensatory mutations at position 198, strengthening the conclusion that residue 198 is a key determinant of σ3 proteolytic susceptibility. Variants with Y354H in σ3 lost infectivity more rapidly than T3A or T3D following heat treatment, an effect abrogated by G198E. These results identify a regulatory network of residues that control σ3 cleavage and capsid stability, thus providing insight into the regulation of nonenveloped virus disassembly.
哺乳动物呼肠孤病毒在附着和内化后,经历细胞内蛋白水解的解体,随后病毒穿透细胞质。呼肠孤病毒解体的起始事件是组织蛋白酶介导的病毒外壳蛋白 σ3 的蛋白水解降解。在氨基酸 354 处(Y354H)的单个酪氨酸到组氨酸突变增强了呼肠孤病毒的解体,并赋予其对蛋白酶抑制剂如 E64 的抗性。株型 3 达林(T3D)σ3 的氨基酸序列与 T3A 在八个位置不同,包括 Y354H。然而,T3A 显示出与 T3D 相当的解体动力学和蛋白酶敏感性。我们假设一个或多个额外的 σ3 多态性抑制 Y354H 表型并恢复 T3D 解体特征。为了验证这一假设,我们设计了一组带有 T3A σ3 多态性的呼肠孤病毒变体,将其分别引入 T3D-σ3Y354H。我们评估了这些病毒的 E64 抗性和体外组织蛋白酶 L 敏感性,发现一个含有位置 198 甘氨酸到谷氨酸取代的病毒(G198E)显示出与 T3A 和 T3D 相似的解体动力学和 E64 敏感性。此外,在位置 233 和 347 处发生变化的病毒(S233L 和 I347T)在位置 198 处产生新的补偿突变,这加强了 198 位残基是 σ3 蛋白水解敏感性的关键决定因素的结论。σ3 中的 Y354H 变体在热处理后比 T3A 或 T3D 更快地失去感染性,这一效应被 G198E 消除。这些结果确定了控制 σ3 切割和衣壳稳定性的残基调节网络,从而深入了解无包膜病毒解体的调节。