Suppr超能文献

使用触觉图像、有限元方法和人工神经网络进行夹杂物力学性能估计。

Inclusion mechanical property estimation using tactile images, finite element method, and artificial neural network.

作者信息

Lee Jong-Ha, Won Chang-Hee

机构信息

Department of Electrical and Computer Engineering, Temple University, Philadelphia, PA 19122, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:14-7. doi: 10.1109/IEMBS.2011.6089885.

Abstract

In this paper, we developed a methodology for estimating three parameters of tissue inclusion: size, depth, and Young's modulus from the tactile data obtained at the tissue surface with the tactile sensation imaging system. The estimation method consists of the forward algorithm using finite element method, and inversion algorithm using artificial neural network. The forward algorithm is designed to comprehensively predict the tactile data based on the mechanical properties of the tissue inclusion. This forward information is used to develop an inversion algorithm that will be used to extract the size, depth, and Young's modulus of a tissue inclusion from the tactile image. The proposed method is then validated with custom made tissue phantoms with matching elasticities of typical human breast tissues. The experimental results showed that the proposed estimation method estimates the size, depth, and Young's modulus of tissue inclusions with root mean squared errors of 1.25 mm, 2.09 mm, and 28.65 kPa, respectively.

摘要

在本文中,我们开发了一种方法,用于从通过触觉传感成像系统在组织表面获得的触觉数据中估计组织内含物的三个参数:大小、深度和杨氏模量。该估计方法由使用有限元法的正向算法和使用人工神经网络的反演算法组成。正向算法旨在根据组织内含物的力学特性全面预测触觉数据。此正向信息用于开发一种反演算法,该算法将用于从触觉图像中提取组织内含物的大小、深度和杨氏模量。然后,使用具有与典型人类乳腺组织匹配弹性的定制组织模型对所提出的方法进行验证。实验结果表明,所提出的估计方法估计组织内含物的大小、深度和杨氏模量时,均方根误差分别为1.25毫米、2.09毫米和28.65千帕。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验