Suppr超能文献

一种应用于艾滋病毒感染的慢性病药物依从性协作意识系统。

A collaborative awareness system for chronic disease medication adherence applied to HIV infection.

作者信息

Moore John O, Hardy Helene, Skolnik Paul R, Moss Franklin H

机构信息

MIT Media Lab, Cambridge, MA 02139, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:1523-7. doi: 10.1109/IEMBS.2011.6090367.

Abstract

Electronic reminder systems have been available for decades, yet medication adherence remains poor. Most systems rely on simple alarms and do not address other determinants of health-related behavior. This paper describes a collaborative awareness system for chronic disease medication adherence that relies on patient self-reflection and clinician support. Visualizations of adherence performance, including estimated plasma concentration graphs and a dynamic, personalized, disease-state simulation, are available to the patient (cell phone and internet media display) and clinician (computer) in real-time. The clinician can send asynchronous video messages of advice and encouragement to the patient regularly. A pilot was conducted with four HIV positive patients for four weeks. Three patients who started with suboptimal adherence improved (93.0% to 99.1%, 83.0% to 96.3%, and 63.9% to 81.3%). One patient who started with optimal medication adherence (>95%) maintained this level. All four patients appreciated the rich feedback and wanted to continue using the system.

摘要

电子提醒系统已经存在了几十年,但药物依从性仍然很差。大多数系统依赖于简单的警报,并未解决健康相关行为的其他决定因素。本文描述了一种用于慢性病药物依从性的协作式感知系统,该系统依赖于患者的自我反思和临床医生的支持。患者(通过手机和互联网媒体展示)和临床医生(通过计算机)可以实时获取依从性表现的可视化信息,包括估计的血浆浓度图以及动态、个性化的疾病状态模拟。临床医生可以定期向患者发送异步视频建议和鼓励信息。对四名艾滋病毒阳性患者进行了为期四周的试点。三名开始时依从性欠佳的患者的依从性得到了改善(从93.0%提高到99.1%、从83.0%提高到96.3%以及从63.9%提高到81.3%)。一名开始时药物依从性最佳(>95%)的患者维持了这一水平。所有四名患者都很欣赏丰富的反馈,并希望继续使用该系统。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验