Suppr超能文献

一种应用于癫痫发作监测的低功耗多模态人体传感器网络。

A low-power multi-modal body sensor network with application to epileptic seizure monitoring.

作者信息

Altini Marco, Del Din Silvia, Patel Shyamal, Schachter Steven, Penders Julien, Bonato Paolo

机构信息

imec / Holst Centre, Eindhoven, The Netherlands. marco.altini imec-nl.nl

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:1806-9. doi: 10.1109/IEMBS.2011.6090515.

Abstract

Monitoring patients' physiological signals during their daily activities in the home environment is one of the challenge of the health care. New ultra-low-power wireless technologies could help to achieve this goal. In this paper we present a low-power, multi-modal, wearable sensor platform for the simultaneous recording of activity and physiological data. First we provide a description of the wearable sensor platform, and its characteristics with respect to power consumption. Second we present the preliminary results of the comparison between our sensors and a reference system, on healthy subjects, to test the reliability of the detected physiological (electrocardiogram and respiration) and electromyography signals.

摘要

在家庭环境中监测患者日常活动期间的生理信号是医疗保健面临的挑战之一。新型超低功耗无线技术有助于实现这一目标。在本文中,我们展示了一个用于同时记录活动和生理数据的低功耗、多模态可穿戴传感器平台。首先,我们描述了该可穿戴传感器平台及其在功耗方面的特性。其次,我们展示了在健康受试者身上将我们的传感器与参考系统进行比较的初步结果,以测试所检测到的生理信号(心电图和呼吸)以及肌电图信号的可靠性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验