Suppr超能文献

波士顿视网膜假体的研发。

Development of the boston retinal prosthesis.

作者信息

Rizzo Joseph F, Shire Douglas B, Kelly Shawn K, Troyk Phil, Gingerich Marcus, McKee Bruce, Priplata Attila, Chen Jinghua, Drohan William, Doyle Patrick, Mendoza Oscar, Theogarajan Luke, Cogan Stuart, Wyatt John L

机构信息

Boston VA Healthcare System, 150 S Huntington Ave, Boston, MA 02130, USA. joseph_rizzo @meei.harvard.edu

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:3135-8. doi: 10.1109/IEMBS.2011.6090855.

Abstract

A small, hermetic, wirelessly-controlled retinal prosthesis was developed for pre-clinical studies in Yucatan mini-pigs. The device was implanted on the outside of the eye in the orbit, and it received both power and data wirelessly from external sources. The prosthesis drove a sub-retinal thin-film array of sputtered iridium oxide stimulating electrodes. The implanted device included a hermetic titanium case containing the 16-channel stimulator chip and discrete circuit components. Feedthroughs in the hermetic case connected the chip to secondary power- and data-receiving coils, which coupled to corresponding external power and data coils driven by a power amplifier. Power was delivered by a 500 KHz carrier, and data were delivered by frequency shift keying. Stimulation pulse strength, duration and frequency were programmed wirelessly from an external computer system. Through an 'outbound' telemetry channel, electrode impedances were monitored by an on-board analog to digital converter that sampled the output voltage waveforms. The final assembly was tested in vitro in physiological saline and in vivo in two mini-pigs for up to three months by measuring stimulus artifacts generated by the implant's current drivers.

摘要

为在尤卡坦小型猪身上进行临床前研究,研发了一种小型、密封、无线控制的视网膜假体。该装置植入眼眶内眼球外部,通过无线方式从外部获取电源和数据。该假体驱动一个由溅射氧化铱刺激电极组成的视网膜下薄膜阵列。植入设备包括一个密封钛壳,壳内装有16通道刺激器芯片和分立电路元件。密封壳内的穿通线将芯片与次级电源和数据接收线圈相连,这些线圈与由功率放大器驱动的相应外部电源和数据线圈耦合。通过500千赫兹载波传输电力,通过频移键控传输数据。刺激脉冲强度、持续时间和频率可通过外部计算机系统进行无线编程。通过一个“出站”遥测通道,由板载模数转换器监测电极阻抗,该转换器对输出电压波形进行采样。通过测量植入物电流驱动器产生的刺激伪迹,对最终组件在生理盐水中进行体外测试,并在两只小型猪体内进行长达三个月的体内测试。

相似文献

1
Development of the boston retinal prosthesis.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:3135-8. doi: 10.1109/IEMBS.2011.6090855.
2
Overview of the boston retinal prosthesis: challenges and opportunities to restore useful vision to the blind.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:7492-5. doi: 10.1109/IEMBS.2011.6093610.
3
Communication and Control System for a 15-Channel Hermetic Retinal Prosthesis.
Biomed Signal Process Control. 2011 Oct 1;6(4):356-363. doi: 10.1016/j.bspc.2011.05.007.
4
A hermetic wireless subretinal neurostimulator for vision prostheses.
IEEE Trans Biomed Eng. 2011 Nov;58(11):3197-205. doi: 10.1109/TBME.2011.2165713. Epub 2011 Aug 22.
5
Realization of a 15-channel, hermetically-encased wireless subretinal prosthesis for the blind.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:200-3. doi: 10.1109/IEMBS.2009.5333619.
6
Development and implantation of a minimally invasive wireless subretinal neurostimulator.
IEEE Trans Biomed Eng. 2009 Oct;56(10):2502-11. doi: 10.1109/TBME.2009.2021401. Epub 2009 Apr 28.
7
ASIC design and data communications for the Boston retinal prosthesis.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:292-5. doi: 10.1109/EMBC.2012.6345927.
8
Laser Driven Miniature Diamond Implant for Wireless Retinal Prostheses.
Adv Biosyst. 2020 Nov;4(11):e2000055. doi: 10.1002/adbi.202000055. Epub 2020 Oct 20.
9
Low-Power BPSK Inductive Data Link for an Implanted Intracortical Visual Prosthesis.
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:1-5. doi: 10.1109/EMBC.2019.8857225.
10
A 232-channel retinal vision prosthesis with a miniaturized hermetic package.
Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:2796-9. doi: 10.1109/EMBC.2012.6346545.

引用本文的文献

1
Micro-Fabrication of Components for a High-Density Sub-Retinal Visual Prosthesis.
Micromachines (Basel). 2020 Oct 19;11(10):944. doi: 10.3390/mi11100944.
2
Implantation and Extraction of Penetrating Electrode Arrays in Minipig Retinas.
Transl Vis Sci Technol. 2020 Apr 24;9(5):19. doi: 10.1167/tvst.9.5.19. eCollection 2020 Apr.
3
Retinal Prosthetic Approaches to Enhance Visual Perception for Blind Patients.
Micromachines (Basel). 2020 May 24;11(5):535. doi: 10.3390/mi11050535.
4
Advances in retinal prosthesis systems.
Ther Adv Ophthalmol. 2019 Jan 17;11:2515841418817501. doi: 10.1177/2515841418817501. eCollection 2019 Jan-Dec.

本文引用的文献

1
Realization of a 15-channel, hermetically-encased wireless subretinal prosthesis for the blind.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:200-3. doi: 10.1109/IEMBS.2009.5333619.
2
Extraction of a chronically implanted, microfabricated, subretinal electrode array.
Ophthalmic Res. 2009;42(3):128-37. doi: 10.1159/000227278. Epub 2009 Jul 4.
3
Development and implantation of a minimally invasive wireless subretinal neurostimulator.
IEEE Trans Biomed Eng. 2009 Oct;56(10):2502-11. doi: 10.1109/TBME.2009.2021401. Epub 2009 Apr 28.
5
Retinal neurostimulator for a multifocal vision prosthesis.
IEEE Trans Neural Syst Rehabil Eng. 2007 Sep;15(3):425-34. doi: 10.1109/TNSRE.2007.903958.
6
Neural reprogramming in retinal degeneration.
Invest Ophthalmol Vis Sci. 2007 Jul;48(7):3364-71. doi: 10.1167/iovs.07-0032.
7
Visual performance using a retinal prosthesis in three subjects with retinitis pigmentosa.
Am J Ophthalmol. 2007 May;143(5):820-827. doi: 10.1016/j.ajo.2007.01.027. Epub 2007 Mar 23.
8
Experimental implantation of epiretinal retina implants (EPI-RET) with an IOL-type receiver unit.
J Neural Eng. 2007 Mar;4(1):S38-49. doi: 10.1088/1741-2560/4/1/S06. Epub 2007 Feb 20.
9
Responses of ganglion cells to repetitive electrical stimulation of the retina.
J Neural Eng. 2007 Mar;4(1):S1-6. doi: 10.1088/1741-2560/4/1/S01. Epub 2007 Jan 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验