Pasluosta Cristian F, Dua Prerna, Lukiw Walter J
Department of Health Informatics and Information Management, Louisiana Tech university, Ruston, LA 71270, USA.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:5559-62. doi: 10.1109/IEMBS.2011.6091344.
Microarray analysis can contribute considerably to the understanding of biologically significant cellular mechanisms that yield novel information regarding co-regulated sets of gene patterns. Clustering is one of the most popular tools for analyzing DNA microarray data. In this paper, we present an unsupervised clustering algorithm based on the K-local hyperplane distance nearest-neighbor classifier (HKNN). We adapted the well-known nearest neighbor clustering algorithm for use with hyperplane distance. The result is a simple and computationally inexpensive unsupervised clustering algorithm that can be applied to high-dimensional data. It has been reported that the NFkB1 gene is progressively over-expressed in moderate-to-severe Alzheimer's disease (AD) cases, and that the NF-kB complex plays a key role in neuroinflammatory responses in AD pathogenesis. In this study, we apply the proposed clustering algorithm to identify co-expression patterns with the NFkB1 in gene expression data from hippocampal tissue samples. Finally, we validate our experiments with biomedical literature search.
微阵列分析对于理解具有生物学意义的细胞机制有很大帮助,这些机制能产生有关共同调控的基因模式集的新信息。聚类是分析DNA微阵列数据最常用的工具之一。在本文中,我们提出了一种基于K局部超平面距离最近邻分类器(HKNN)的无监督聚类算法。我们对著名的最近邻聚类算法进行了调整,使其适用于超平面距离。结果得到了一种简单且计算成本低的无监督聚类算法,可应用于高维数据。据报道,NFkB1基因在中度至重度阿尔茨海默病(AD)病例中逐渐过度表达,并且NF-κB复合物在AD发病机制的神经炎症反应中起关键作用。在本研究中,我们应用所提出的聚类算法,从海马组织样本的基因表达数据中识别与NFkB1的共表达模式。最后,我们通过生物医学文献检索对实验进行验证。