Suppr超能文献

一种用于识别与阿尔茨海默病相关基因的特殊局部聚类算法。

A special local clustering algorithm for identifying the genes associated with Alzheimer's disease.

机构信息

Biomedical Informatics and Cheminformatics Group, Conjugate and Medicinal Chemistry Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.

出版信息

IEEE Trans Nanobioscience. 2010 Mar;9(1):44-50. doi: 10.1109/TNB.2009.2037745. Epub 2010 Jan 19.

Abstract

Clustering is the grouping of similar objects into a class. Local clustering feature refers to the phenomenon whereby one group of data is separated from another, and the data from these different groups are clustered locally. A compact class is defined as one cluster in which all similar elements cluster tightly within the cluster. Herein, the essence of the local clustering feature, revealed by mathematical manipulation, results in a novel clustering algorithm termed as the special local clustering (SLC) algorithm that was used to process gene microarray data related to Alzheimer's disease (AD). SLC algorithm was able to group together genes with similar expression patterns and identify significantly varied gene expression values as isolated points. If a gene belongs to a compact class in control data and appears as an isolated point in incipient, moderate and/or severe AD gene microarray data, this gene is possibly associated with AD. Application of a clustering algorithm in disease-associated gene identification such as in AD is rarely reported.

摘要

聚类是将相似对象分组到一个类中。局部聚类特征是指一组数据与另一组数据分开的现象,来自这些不同组的数据在局部被聚类。紧密度是指一个聚类中所有相似的元素在聚类内部紧密聚集。通过数学运算揭示了局部聚类特征的本质,产生了一种新的聚类算法,称为特殊局部聚类(SLC)算法,用于处理与阿尔茨海默病(AD)相关的基因微阵列数据。SLC 算法能够将具有相似表达模式的基因组合在一起,并将显著变化的基因表达值识别为孤立点。如果一个基因在对照数据中属于一个紧凑类,并且在早期、中度和/或重度 AD 基因微阵列数据中表现为一个孤立点,那么这个基因可能与 AD 有关。聚类算法在疾病相关基因识别中的应用,如 AD 中,很少有报道。

相似文献

1
A special local clustering algorithm for identifying the genes associated with Alzheimer's disease.
IEEE Trans Nanobioscience. 2010 Mar;9(1):44-50. doi: 10.1109/TNB.2009.2037745. Epub 2010 Jan 19.
2
Nearest hyperplane distance neighbor clustering algorithm applied to gene co-expression analysis in Alzheimer's disease.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:5559-62. doi: 10.1109/IEMBS.2011.6091344.
4
Exploring matrix factorization techniques for significant genes identification of Alzheimer's disease microarray gene expression data.
BMC Bioinformatics. 2011;12 Suppl 5(Suppl 5):S7. doi: 10.1186/1471-2105-12-S5-S7. Epub 2011 Jul 27.
5
Dynamic regulatory network reconstruction for Alzheimer's disease based on matrix decomposition techniques.
Comput Math Methods Med. 2014;2014:891761. doi: 10.1155/2014/891761. Epub 2014 Jun 15.
6
Cross-species microarray analysis with the OSCAR system suggests an INSR->Pax6->NQO1 neuro-protective pathway in aging and Alzheimer's disease.
Nucleic Acids Res. 2007 Jul;35(Web Server issue):W105-14. doi: 10.1093/nar/gkm408. Epub 2007 Jun 1.
7
Gene microarray data analysis using parallel point-symmetry-based clustering.
Int J Data Min Bioinform. 2015;11(3):277-300. doi: 10.1504/ijdmb.2015.067320.
8
FLAME, a novel fuzzy clustering method for the analysis of DNA microarray data.
BMC Bioinformatics. 2007 Jan 4;8:3. doi: 10.1186/1471-2105-8-3.
10
Unveiling clusters of RNA transcript pairs associated with markers of Alzheimer's disease progression.
PLoS One. 2012;7(9):e45535. doi: 10.1371/journal.pone.0045535. Epub 2012 Sep 21.

引用本文的文献

本文引用的文献

1
Supervised learning-based tagSNP selection for genome-wide disease classifications.
BMC Genomics. 2008;9 Suppl 1(Suppl 1):S6. doi: 10.1186/1471-2164-9-S1-S6.
2
Genome-wide association studies in Alzheimer disease.
Arch Neurol. 2008 Mar;65(3):329-34. doi: 10.1001/archneur.65.3.329.
4
A novel approach to phylogenetic tree construction using stochastic optimization and clustering.
BMC Bioinformatics. 2006 Dec 12;7 Suppl 4(Suppl 4):S24. doi: 10.1186/1471-2105-7-S4-S24.
6
Statistical analysis of microarray data.
Addict Biol. 2005 Mar;10(1):23-35. doi: 10.1080/13556210412331327795.
7
Incipient Alzheimer's disease: microarray correlation analyses reveal major transcriptional and tumor suppressor responses.
Proc Natl Acad Sci U S A. 2004 Feb 17;101(7):2173-8. doi: 10.1073/pnas.0308512100. Epub 2004 Feb 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验