Suppr超能文献

局部场电位驱动的Izhikevich模型预测底丘脑核神经元活动。

Local field potential driven Izhikevich model predicts a subthalamic nucleus neuron activity.

作者信息

Michmizos Kostis P, Nikita Konstantina S

机构信息

Biomedical Simulations and Imaging Laboratory, Faculty of Electrical and Computer Engineering, National Technical University of Athens, 15780, Athens, Greece.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:5900-3. doi: 10.1109/IEMBS.2011.6091459.

Abstract

An interesting question has been raised recently regarding the relationship between the local field potentials (LFPs) and the single unit spiking activity. In this study, we investigate whether a linear modification of the LFPs, acquired from microelectrode recordings inside the subthalamic nucleus (STN) of Parkinson's disease patients, can provide input to an appropriately parameterized Izhikevich model to predict the spikes of an STN neuron. We show that the model is able to predict both the exact timing and the rhythm of the recorded spikes with high accuracy in 5 out of 7 intranuclear single neuron recordings. For the rest of the models, one model shows a lower accuracy in predicting the rhythm and the second one shows a lower accuracy in predicting the timing of the spikes. Overall, the results dictate that the LFPs can reliably predict the occurrence of spikes.

摘要

最近,关于局部场电位(LFP)与单个神经元放电活动之间的关系引发了一个有趣的问题。在本研究中,我们探究了从帕金森病患者丘脑底核(STN)内微电极记录获得的LFP的线性修正,是否能够为参数适当的Izhikevich模型提供输入,以预测STN神经元的放电。我们表明,在7个核内单神经元记录中,有5个记录该模型能够高精度地预测记录到的放电的精确时间和节律。对于其余的模型,一个模型在预测节律方面准确性较低,另一个模型在预测放电时间方面准确性较低。总体而言,结果表明LFP能够可靠地预测放电事件的发生。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验