Zycinski Grzegorz, Barla Annalisa, Verri Alessandro
DISI, Department of Information and Computer Science, University of Genova, I-16146 via Dodecaneso 35, Genova, Italy.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:6474-8. doi: 10.1109/IEMBS.2011.6091598.
In this paper we present a framework for structured variable selection (SVS). The main concept of the proposed schema is to take a step towards the integration of two different aspects of data mining: database and machine learning perspective. The framework is flexible enough to use not only microarray data, but other high-throughput data of choice (e.g. from mass spectrometry, microarray, next generation sequencing). Moreover, the feature selection phase incorporates prior biological knowledge in a modular way from various repositories and is ready to host different statistical learning techniques. We present a proof of concept of SVS, illustrating some implementation details and describing current results on high-throughput microarray data.
在本文中,我们提出了一种结构化变量选择(SVS)框架。所提出方案的主要概念是朝着整合数据挖掘的两个不同方面迈出一步:数据库和机器学习视角。该框架足够灵活,不仅可以使用微阵列数据,还可以使用其他选择的高通量数据(例如来自质谱分析、微阵列、下一代测序的数据)。此外,特征选择阶段以模块化方式从各种存储库中纳入了先验生物学知识,并准备好容纳不同的统计学习技术。我们展示了SVS的概念验证,说明了一些实现细节并描述了关于高通量微阵列数据的当前结果。
Annu Int Conf IEEE Eng Med Biol Soc. 2011
BMC Bioinformatics. 2005-3-23
Front Biosci. 2008-1-1
IEEE/ACM Trans Comput Biol Bioinform. 2009
Int J Data Min Bioinform. 2014
IEEE/ACM Trans Comput Biol Bioinform. 2011
Biomed Mater Eng. 2014
Appl Bioinformatics. 2005
Microarrays (Basel). 2016-6-8
Springerplus. 2013-5-24