文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

SVS:计算生物学中的数据与知识整合

SVS: data and knowledge integration in computational biology.

作者信息

Zycinski Grzegorz, Barla Annalisa, Verri Alessandro

机构信息

DISI, Department of Information and Computer Science, University of Genova, I-16146 via Dodecaneso 35, Genova, Italy.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:6474-8. doi: 10.1109/IEMBS.2011.6091598.


DOI:10.1109/IEMBS.2011.6091598
PMID:22255821
Abstract

In this paper we present a framework for structured variable selection (SVS). The main concept of the proposed schema is to take a step towards the integration of two different aspects of data mining: database and machine learning perspective. The framework is flexible enough to use not only microarray data, but other high-throughput data of choice (e.g. from mass spectrometry, microarray, next generation sequencing). Moreover, the feature selection phase incorporates prior biological knowledge in a modular way from various repositories and is ready to host different statistical learning techniques. We present a proof of concept of SVS, illustrating some implementation details and describing current results on high-throughput microarray data.

摘要

在本文中,我们提出了一种结构化变量选择(SVS)框架。所提出方案的主要概念是朝着整合数据挖掘的两个不同方面迈出一步:数据库和机器学习视角。该框架足够灵活,不仅可以使用微阵列数据,还可以使用其他选择的高通量数据(例如来自质谱分析、微阵列、下一代测序的数据)。此外,特征选择阶段以模块化方式从各种存储库中纳入了先验生物学知识,并准备好容纳不同的统计学习技术。我们展示了SVS的概念验证,说明了一些实现细节并描述了关于高通量微阵列数据的当前结果。

相似文献

[1]
SVS: data and knowledge integration in computational biology.

Annu Int Conf IEEE Eng Med Biol Soc. 2011

[2]
An efficient approach for feature construction of high-dimensional microarray data by random projections.

PLoS One. 2018-4-27

[3]
Feature selection and nearest centroid classification for protein mass spectrometry.

BMC Bioinformatics. 2005-3-23

[4]
Classification algorithms for phenotype prediction in genomics and proteomics.

Front Biosci. 2008-1-1

[5]
Laplacian linear discriminant analysis approach to unsupervised feature selection.

IEEE/ACM Trans Comput Biol Bioinform. 2009

[6]
On a solution for the high-dimensionality-small-sample-size regression problem with several different microarrays.

Int J Data Min Bioinform. 2014

[7]
Two-step cross-entropy feature selection for microarrays—power through complementarity.

IEEE/ACM Trans Comput Biol Bioinform. 2011

[8]
A granular computing approach to gene selection.

Biomed Mater Eng. 2014

[9]
cluML: A markup language for clustering and cluster validity assessment of microarray data.

Appl Bioinformatics. 2005

[10]
Feature selection methods for big data bioinformatics: A survey from the search perspective.

Methods. 2016-12-1

引用本文的文献

[1]
Characterization of bovine (Bos taurus) imprinted genes from genomic to amino acid attributes by data mining approaches.

PLoS One. 2019-6-6

[2]
Enhancing Interpretability of Gene Signatures with Prior Biological Knowledge.

Microarrays (Basel). 2016-6-8

[3]
Prediction of lung tumor types based on protein attributes by machine learning algorithms.

Springerplus. 2013-5-24

[4]
Knowledge Driven Variable Selection (KDVS) - a new approach to enrichment analysis of gene signatures obtained from high-throughput data.

Source Code Biol Med. 2013-1-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索