Suppr超能文献

用于改善P300试验分类的脑电图盲源分离技术比较。

Comparison of EEG blind source separation techniques to improve the classification of P300 trials.

作者信息

Cashero Zach, Anderson Chuck

机构信息

Department of Computer Science, Colorado State University, Fort Collins, CO 80523, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:7183-6. doi: 10.1109/IEMBS.2011.6091815.

Abstract

This paper provides a comparison of several blind source separation (BSS) techniques as they are applied to EEG signals. Specifically, this work focuses on the P300 speller paradigm and assesses the classification accuracies for the identification of P300 trials. Previous work has shown that BSS methods such as independent component analysis (ICA) are useful in extracting the P300 source information from the background noise, increasing the classification rates. ICA will be compared with two other BSS methods, maximum noise fraction (MNF) and principal component analysis (PCA). In addition to this, we will analyze the effect of adding temporal information to the original data, which allows these BSS algorithms to find more complex spatio-temporal patterns.

摘要

本文对几种应用于脑电图(EEG)信号的盲源分离(BSS)技术进行了比较。具体而言,这项工作聚焦于P300拼写范式,并评估识别P300试验的分类准确率。先前的研究表明,诸如独立成分分析(ICA)等BSS方法有助于从背景噪声中提取P300源信息,提高分类率。ICA将与另外两种BSS方法,即最大噪声分量分析(MNF)和主成分分析(PCA)进行比较。除此之外,我们将分析向原始数据添加时间信息的效果,这能使这些BSS算法找到更复杂的时空模式。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验