Petroudi Styliani, Loizou Christos, Pantziaris Marios, Pattichis Marios, Pattichis Constantinos
Department of Computer Science at the University of Cyprus, PO Box 20537 1678 Nicosia, Cyprus.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:8053-7. doi: 10.1109/IEMBS.2011.6091986.
The thickness of the intima-media complex (IMC) of the common carotid artery (CCA) wall is important in the evaluation of the risk for the development of atherosclerosis. This paper presents a fully automated algorithm for the segmentation of the IMC. The segmentation of the IMC of the CCA wall is important for the evaluation of the intima media thickness (IMT) on B-mode ultrasound images. The presented algorithm is based on active contours and active contours without edges. It begins with image normalization, followed by speckle removal. The level set formulation of Chan and Vese using random initialization provides a segmentation of the CCA ultrasound (US) images into different distinct regions, one of which corresponds to the carotid wall region above the lumen whilst another corresponds to the carotid wall region below the lumen and includes the IMC. The results of the corresponding segmentation combined with anatomical information provide a very accurate outline of the lumen-intima boundary. This outline serves as an excellent initialization for segmentation of the IMC using parametric active contours. The method lends itself to the development of a fully automated method for the delineation of the IMC. The mean and standard deviation of the thickness of the automatically segmented regions are 0.65 mm +/-0.17 mm and the corresponding values for the ground truth IMT are 0.66 mm +/-0.18 mm. The Wilcoxon rank sum test shows no significant difference.
颈总动脉(CCA)壁内膜-中膜复合体(IMC)的厚度在评估动脉粥样硬化发展风险中具有重要意义。本文提出了一种用于IMC分割的全自动算法。CCA壁IMC的分割对于在B模式超声图像上评估内膜中层厚度(IMT)很重要。所提出的算法基于活动轮廓和无边缘活动轮廓。它首先进行图像归一化,然后去除斑点。使用随机初始化的Chan和Vese水平集公式将CCA超声(US)图像分割为不同的区域,其中一个区域对应于管腔上方的颈动脉壁区域,而另一个区域对应于管腔下方的颈动脉壁区域并包括IMC。相应分割结果与解剖学信息相结合,提供了管腔-内膜边界的非常精确的轮廓。该轮廓为使用参数活动轮廓分割IMC提供了出色的初始化。该方法有助于开发一种用于描绘IMC的全自动方法。自动分割区域厚度的平均值和标准差分别为0.65 mm±0.17 mm,而真实IMT的相应值为0.66 mm±0.18 mm。Wilcoxon秩和检验显示无显著差异。