Suppr超能文献

全自动分割和跟踪颈总动脉超声视频序列中的内中膜厚度。

Fully automated segmentation and tracking of the intima media thickness in ultrasound video sequences of the common carotid artery.

机构信息

Centre for Image Processing and Analysis-CIPA, Dublin City University, Dublin, Ireland.

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2013 Jan;60(1):158-77. doi: 10.1109/TUFFC.2013.2547.

Abstract

The robust identification and measurement of the intima media thickness (IMT) has a high clinical relevance because it represents one of the most precise predictors used in the assessment of potential future cardiovascular events. To facilitate the analysis of arterial wall thickening in serial clinical investigations, in this paper we have developed a novel fully automatic algorithm for the segmentation, measurement, and tracking of the intima media complex (IMC) in B-mode ultrasound video sequences. The proposed algorithm entails a two-stage image analysis process that initially addresses the segmentation of the IMC in the first frame of the ultrasound video sequence using a model-based approach; in the second step, a novel customized tracking procedure is applied to robustly detect the IMC in the subsequent frames. For the video tracking procedure, we introduce a spatially coherent algorithm called adaptive normalized correlation that prevents the tracking process from converging to wrong arterial interfaces. This represents the main contribution of this paper and was developed to deal with inconsistencies in the appearance of the IMC over the cardiac cycle. The quantitative evaluation has been carried out on 40 ultrasound video sequences of the common carotid artery (CCA) by comparing the results returned by the developed algorithm with respect to ground truth data that has been manually annotated by clinical experts. The measured IMT(mean) ± standard deviation recorded by the proposed algorithm is 0.60 mm ± 0.10, with a mean coefficient of variation (CV) of 2.05%, whereas the corresponding result obtained for the manually annotated ground truth data is 0.60 mm ± 0.11 with a mean CV equal to 5.60%. The numerical results reported in this paper indicate that the proposed algorithm is able to correctly segment and track the IMC in ultrasound CCA video sequences, and we were encouraged by the stability of our technique when applied to data captured under different imaging conditions. Future clinical studies will focus on the evaluation of patients that are affected by advanced cardiovascular conditions such as focal thickening and arterial plaques.

摘要

内中膜厚度(IMT)的稳健识别和测量具有重要的临床相关性,因为它是评估潜在未来心血管事件的最精确预测指标之一。为了便于在连续的临床研究中分析动脉壁增厚,本文提出了一种新颖的全自动算法,用于对 B 型超声视频序列中的内中膜复合层(IMC)进行分割、测量和跟踪。所提出的算法需要一个两阶段的图像分析过程,该过程最初使用基于模型的方法来解决超声视频序列中第一帧 IMC 的分割问题;在第二步中,应用一种新的定制跟踪程序来稳健地检测后续帧中的 IMC。对于视频跟踪过程,我们引入了一种称为自适应归一化相关的空间一致算法,该算法可以防止跟踪过程收敛到错误的动脉界面。这是本文的主要贡献,并开发它是为了处理 IMC 在心动周期中的外观不一致问题。通过将所开发的算法的结果与由临床专家手动注释的地面真实数据进行比较,对 40 条颈总动脉(CCA)的超声视频序列进行了定量评估。所提出的算法记录的平均 IMT(mean)±标准偏差为 0.60mm±0.10,平均变异系数(CV)为 2.05%,而手动注释的地面真实数据的相应结果为 0.60mm±0.11,平均 CV 等于 5.60%。本文报告的数值结果表明,所提出的算法能够正确地分割和跟踪超声 CCA 视频序列中的 IMC,并且当应用于不同成像条件下采集的数据时,我们的技术稳定性令人鼓舞。未来的临床研究将集中在评估患有局灶性增厚和动脉斑块等先进心血管疾病的患者。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验