Suppr超能文献

Design and validation of a platform robot for determination of ankle impedance during ambulation.

作者信息

Rouse Elliott J, Hargrove Levi J, Peshkin Michael A, Kuiken Todd A

机构信息

Biomedical Engineering Department, Northwestern University, Evanston, IL 60208, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:8179-82. doi: 10.1109/IEMBS.2011.6092017.

Abstract

In order to provide natural, biomimetic control to recently developed powered ankle prostheses, we must characterize the impedance of the ankle during ambulation tasks. To this end, a platform robot was developed that can apply an angular perturbation to the ankle during ambulation and simultaneously acquire ground reaction force data. In this study, we detail the design of the platform robot and characterize the impedance of the ankle during quiet standing. Subjects were perturbed by a 3° dorsiflexive ramp perturbation with a length of 150 ms. The impedance was defined parametrically, using a second order model to map joint angle to the torque response. The torque was determined using the inverted pendulum assumption, and impedance was identified by the least squares best estimate, yielding an average damping coefficient of 0.03 ± 0.01 Nms/° and an average stiffness coefficient of 3.1 ± 1.2 Nm/°. The estimates obtained by the proposed platform robot compare favorably to those published in the literature. Future work will investigate the impedance of the ankle during ambulation for powered prosthesis controller development.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验